CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
a7e68bf verified
raw
history blame
12.6 kB
import sys
import os
import pandas as pd
import gradio as gr
import re
import hashlib
from datetime import datetime
from collections import defaultdict
from typing import List, Dict, Tuple
# Configuration
PERSISTENT_DIR = "/data/hf_cache"
os.makedirs(os.path.join(PERSISTENT_DIR, "reports"), exist_ok=True)
class PatientHistoryAnalyzer:
def __init__(self):
self.max_token_length = 2000 # Conservative limit
self.max_text_length = 500 # Characters per field
def clean_text(self, text: str) -> str:
"""Clean and normalize text fields"""
if not isinstance(text, str):
text = str(text)
text = re.sub(r'\s+', ' ', text).strip()
return text[:self.max_text_length]
def process_excel(self, file_path: str) -> Dict[str, List]:
"""Process Excel file into structured patient data"""
try:
df = pd.read_excel(file_path)
df = df.sort_values('Interview Date')
data = {
'timeline': [],
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'doctors': set(),
'all_entries': [] # For full history analysis
}
for _, row in df.iterrows():
entry = {
'date': self.clean_text(row.get('Interview Date', '')),
'doctor': self.clean_text(row.get('Interviewer', '')),
'form': self.clean_text(row.get('Form Name', '')),
'item': self.clean_text(row.get('Form Item', '')),
'response': self.clean_text(row.get('Item Response', '')),
'notes': self.clean_text(row.get('Description', ''))
}
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
data['all_entries'].append(entry)
# Categorize entries
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower:
data['tests'][entry['item']].append(entry)
return data
except Exception as e:
raise ValueError(f"Error processing Excel file: {str(e)}")
def generate_analysis_prompt(self, patient_data: Dict) -> List[Dict]:
"""Generate analysis prompts that respect token limits"""
prompts = []
# 1. Current Status Prompt (most recent data)
current_prompt = self._create_current_status_prompt(patient_data)
prompts.append({
'type': 'current_status',
'content': current_prompt,
'token_estimate': len(current_prompt.split()) # Rough estimate
})
# 2. Historical Analysis Prompt (if needed)
if len(patient_data['all_entries']) > 10:
history_prompt = self._create_historical_prompt(patient_data)
prompts.append({
'type': 'historical',
'content': history_prompt,
'token_estimate': len(history_prompt.split())
})
# 3. Medication-Specific Prompt (if complex medication history)
if len(patient_data['medications']) > 3:
meds_prompt = self._create_medication_prompt(patient_data)
prompts.append({
'type': 'medications',
'content': meds_prompt,
'token_estimate': len(meds_prompt.split())
})
return prompts
def _create_current_status_prompt(self, data: Dict) -> str:
"""Create prompt for current patient status"""
recent_entries = data['timeline'][-10:] # Last 10 entries
prompt_lines = [
"**Comprehensive Patient Status Analysis**",
"Focus on RECENT appointments and CURRENT health status.",
"Analyze for:",
"- Medication consistency",
"- Diagnostic agreement between providers",
"- Recent concerning findings",
"- Immediate follow-up needs",
"",
"**Recent Timeline (last 10 entries):**"
]
for entry in recent_entries:
prompt_lines.append(
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
)
prompt_lines.extend([
"",
"**Current Medications:**",
*[f"- {med}: {entries[-1]['response']} (last updated {entries[-1]['date']})"
for med, entries in data['medications'].items()],
"",
"**Active Diagnoses:**",
*[f"- {diag}: {entries[-1]['response']} (last updated {entries[-1]['date']})"
for diag, entries in data['diagnoses'].items()],
"",
"**Required Output Format:**",
"### Summary of Current Status",
"### Medication Review",
"### Diagnostic Consistency",
"### Urgent Concerns",
"### Recommended Actions"
])
return "\n".join(prompt_lines)
def _create_historical_prompt(self, data: Dict) -> str:
"""Create prompt for historical analysis"""
return "\n".join([
"**Historical Patient Analysis**",
"Focus on LONG-TERM PATTERNS and HISTORY.",
"",
"**Key Analysis Points:**",
"- Treatment changes over time",
"- Recurring symptoms/issues",
"- Diagnostic evolution",
"- Medication history",
"",
"**Historical Timeline (condensed):**",
*[f"- {entry['date'][:7]}: {entry['form']} - {entry['response']}"
for entry in data['all_entries'][:-10]], # All except recent 10
"",
"**Required Output Format:**",
"### Historical Patterns",
"### Treatment Evolution",
"### Chronic Issues",
"### Long-term Recommendations"
])
def _create_medication_prompt(self, data: Dict) -> str:
"""Create medication-specific prompt"""
return "\n".join([
"**Medication-Specific Analysis**",
"Focus on MEDICATION HISTORY and POTENTIAL ISSUES.",
"",
"**Medication History:**",
*[f"- {med}: " + ", ".join(
f"{e['date']}: {e['response']} (by {e['doctor']})"
for e in entries
) for med, entries in data['medications'].items()],
"",
"**Analysis Focus:**",
"- Potential interactions",
"- Dosage changes",
"- Prescriber patterns",
"- Adherence issues",
"",
"**Required Output Format:**",
"### Medication Summary",
"### Potential Issues",
"### Prescriber Patterns",
"### Recommendations"
])
def generate_report(self, analysis_results: List[str]) -> Tuple[str, str]:
"""Combine analysis results into final report"""
report = [
"# Comprehensive Patient History Analysis",
f"**Generated on**: {datetime.now().strftime('%Y-%m-%d %H:%M')}",
""
]
# Add each analysis section
for result in analysis_results:
report.extend(["", "---", "", result])
# Add summary section
report.extend([
"",
"## Overall Clinical Summary",
"This report combines analyses of:",
"- Current health status",
"- Historical patterns",
"- Medication history",
"",
"**Key Takeaways:**",
"[Generated summary of most critical findings would appear here]"
])
full_report = "\n".join(report)
# Save to file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(PERSISTENT_DIR, "reports", f"patient_report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(full_report)
return full_report, report_path
def analyze(self, file_path: str) -> Tuple[str, str]:
"""Main analysis workflow"""
try:
# Process data
patient_data = self.process_excel(file_path)
# Generate prompts (simulating LLM analysis)
prompts = self.generate_analysis_prompt(patient_data)
# Simulate LLM responses (in a real system, you'd call your LLM here)
simulated_responses = [
"### Summary of Current Status\nPatient shows improvement in blood pressure control but new concerns about medication side effects...",
"### Historical Patterns\nChronic back pain has been a consistent issue across 5 providers over 3 years...",
"### Medication Summary\nCurrent regimen includes 4 medications with one potential interaction between..."
]
# Generate final report
return self.generate_report(simulated_responses)
except Exception as e:
return f"Error during analysis: {str(e)}", ""
# Gradio Interface
def create_interface():
analyzer = PatientHistoryAnalyzer()
with gr.Blocks(title="Patient History Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Patient Records (Excel)",
file_types=[".xlsx"],
type="filepath"
)
additional_instructions = gr.Textbox(
label="Special Instructions (Optional)",
placeholder="E.g. 'Focus on pain management history'"
)
analyze_btn = gr.Button("Analyze Full History", variant="primary")
with gr.Column(scale=2):
output_display = gr.Markdown(
label="Analysis Results",
elem_id="results"
)
report_download = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload** your patient's Excel file containing all medical encounters
2. **Click Analyze** to process the complete history
3. **Review** the comprehensive analysis
4. **Download** the full report
### File Requirements
Excel file must contain these columns:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
### Analysis Includes
- Current health status
- Medication history
- Diagnostic consistency
- Treatment patterns
- Clinical recommendations
""")
analyze_btn.click(
fn=analyzer.analyze,
inputs=file_input,
outputs=[output_display, report_download],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"Error launching application: {str(e)}")
sys.exit(1)