File size: 12,592 Bytes
f75a23b f394b25 d184610 f394b25 f75a23b a7e68bf 1c5bd8e d184610 a7e68bf d8282f1 a7e68bf f75a23b a7e68bf f75a23b a7e68bf f75a23b a7e68bf 1c5bd8e a7e68bf 3213a0d a7e68bf 3213a0d a7e68bf 3213a0d a7e68bf 3213a0d a7e68bf d8282f1 a7e68bf 3213a0d a7e68bf e4d9325 a7e68bf e4d9325 a7e68bf d184610 a7e68bf f75a23b a7e68bf d184610 a7e68bf d8282f1 a7e68bf 3213a0d d8282f1 a7e68bf 3213a0d a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d184610 a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d184610 d8282f1 a71a831 55e3db0 f394b25 d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import sys
import os
import pandas as pd
import gradio as gr
import re
import hashlib
from datetime import datetime
from collections import defaultdict
from typing import List, Dict, Tuple
# Configuration
PERSISTENT_DIR = "/data/hf_cache"
os.makedirs(os.path.join(PERSISTENT_DIR, "reports"), exist_ok=True)
class PatientHistoryAnalyzer:
def __init__(self):
self.max_token_length = 2000 # Conservative limit
self.max_text_length = 500 # Characters per field
def clean_text(self, text: str) -> str:
"""Clean and normalize text fields"""
if not isinstance(text, str):
text = str(text)
text = re.sub(r'\s+', ' ', text).strip()
return text[:self.max_text_length]
def process_excel(self, file_path: str) -> Dict[str, List]:
"""Process Excel file into structured patient data"""
try:
df = pd.read_excel(file_path)
df = df.sort_values('Interview Date')
data = {
'timeline': [],
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'doctors': set(),
'all_entries': [] # For full history analysis
}
for _, row in df.iterrows():
entry = {
'date': self.clean_text(row.get('Interview Date', '')),
'doctor': self.clean_text(row.get('Interviewer', '')),
'form': self.clean_text(row.get('Form Name', '')),
'item': self.clean_text(row.get('Form Item', '')),
'response': self.clean_text(row.get('Item Response', '')),
'notes': self.clean_text(row.get('Description', ''))
}
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
data['all_entries'].append(entry)
# Categorize entries
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower:
data['tests'][entry['item']].append(entry)
return data
except Exception as e:
raise ValueError(f"Error processing Excel file: {str(e)}")
def generate_analysis_prompt(self, patient_data: Dict) -> List[Dict]:
"""Generate analysis prompts that respect token limits"""
prompts = []
# 1. Current Status Prompt (most recent data)
current_prompt = self._create_current_status_prompt(patient_data)
prompts.append({
'type': 'current_status',
'content': current_prompt,
'token_estimate': len(current_prompt.split()) # Rough estimate
})
# 2. Historical Analysis Prompt (if needed)
if len(patient_data['all_entries']) > 10:
history_prompt = self._create_historical_prompt(patient_data)
prompts.append({
'type': 'historical',
'content': history_prompt,
'token_estimate': len(history_prompt.split())
})
# 3. Medication-Specific Prompt (if complex medication history)
if len(patient_data['medications']) > 3:
meds_prompt = self._create_medication_prompt(patient_data)
prompts.append({
'type': 'medications',
'content': meds_prompt,
'token_estimate': len(meds_prompt.split())
})
return prompts
def _create_current_status_prompt(self, data: Dict) -> str:
"""Create prompt for current patient status"""
recent_entries = data['timeline'][-10:] # Last 10 entries
prompt_lines = [
"**Comprehensive Patient Status Analysis**",
"Focus on RECENT appointments and CURRENT health status.",
"Analyze for:",
"- Medication consistency",
"- Diagnostic agreement between providers",
"- Recent concerning findings",
"- Immediate follow-up needs",
"",
"**Recent Timeline (last 10 entries):**"
]
for entry in recent_entries:
prompt_lines.append(
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
)
prompt_lines.extend([
"",
"**Current Medications:**",
*[f"- {med}: {entries[-1]['response']} (last updated {entries[-1]['date']})"
for med, entries in data['medications'].items()],
"",
"**Active Diagnoses:**",
*[f"- {diag}: {entries[-1]['response']} (last updated {entries[-1]['date']})"
for diag, entries in data['diagnoses'].items()],
"",
"**Required Output Format:**",
"### Summary of Current Status",
"### Medication Review",
"### Diagnostic Consistency",
"### Urgent Concerns",
"### Recommended Actions"
])
return "\n".join(prompt_lines)
def _create_historical_prompt(self, data: Dict) -> str:
"""Create prompt for historical analysis"""
return "\n".join([
"**Historical Patient Analysis**",
"Focus on LONG-TERM PATTERNS and HISTORY.",
"",
"**Key Analysis Points:**",
"- Treatment changes over time",
"- Recurring symptoms/issues",
"- Diagnostic evolution",
"- Medication history",
"",
"**Historical Timeline (condensed):**",
*[f"- {entry['date'][:7]}: {entry['form']} - {entry['response']}"
for entry in data['all_entries'][:-10]], # All except recent 10
"",
"**Required Output Format:**",
"### Historical Patterns",
"### Treatment Evolution",
"### Chronic Issues",
"### Long-term Recommendations"
])
def _create_medication_prompt(self, data: Dict) -> str:
"""Create medication-specific prompt"""
return "\n".join([
"**Medication-Specific Analysis**",
"Focus on MEDICATION HISTORY and POTENTIAL ISSUES.",
"",
"**Medication History:**",
*[f"- {med}: " + ", ".join(
f"{e['date']}: {e['response']} (by {e['doctor']})"
for e in entries
) for med, entries in data['medications'].items()],
"",
"**Analysis Focus:**",
"- Potential interactions",
"- Dosage changes",
"- Prescriber patterns",
"- Adherence issues",
"",
"**Required Output Format:**",
"### Medication Summary",
"### Potential Issues",
"### Prescriber Patterns",
"### Recommendations"
])
def generate_report(self, analysis_results: List[str]) -> Tuple[str, str]:
"""Combine analysis results into final report"""
report = [
"# Comprehensive Patient History Analysis",
f"**Generated on**: {datetime.now().strftime('%Y-%m-%d %H:%M')}",
""
]
# Add each analysis section
for result in analysis_results:
report.extend(["", "---", "", result])
# Add summary section
report.extend([
"",
"## Overall Clinical Summary",
"This report combines analyses of:",
"- Current health status",
"- Historical patterns",
"- Medication history",
"",
"**Key Takeaways:**",
"[Generated summary of most critical findings would appear here]"
])
full_report = "\n".join(report)
# Save to file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(PERSISTENT_DIR, "reports", f"patient_report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(full_report)
return full_report, report_path
def analyze(self, file_path: str) -> Tuple[str, str]:
"""Main analysis workflow"""
try:
# Process data
patient_data = self.process_excel(file_path)
# Generate prompts (simulating LLM analysis)
prompts = self.generate_analysis_prompt(patient_data)
# Simulate LLM responses (in a real system, you'd call your LLM here)
simulated_responses = [
"### Summary of Current Status\nPatient shows improvement in blood pressure control but new concerns about medication side effects...",
"### Historical Patterns\nChronic back pain has been a consistent issue across 5 providers over 3 years...",
"### Medication Summary\nCurrent regimen includes 4 medications with one potential interaction between..."
]
# Generate final report
return self.generate_report(simulated_responses)
except Exception as e:
return f"Error during analysis: {str(e)}", ""
# Gradio Interface
def create_interface():
analyzer = PatientHistoryAnalyzer()
with gr.Blocks(title="Patient History Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Patient Records (Excel)",
file_types=[".xlsx"],
type="filepath"
)
additional_instructions = gr.Textbox(
label="Special Instructions (Optional)",
placeholder="E.g. 'Focus on pain management history'"
)
analyze_btn = gr.Button("Analyze Full History", variant="primary")
with gr.Column(scale=2):
output_display = gr.Markdown(
label="Analysis Results",
elem_id="results"
)
report_download = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload** your patient's Excel file containing all medical encounters
2. **Click Analyze** to process the complete history
3. **Review** the comprehensive analysis
4. **Download** the full report
### File Requirements
Excel file must contain these columns:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
### Analysis Includes
- Current health status
- Medication history
- Diagnostic consistency
- Treatment patterns
- Clinical recommendations
""")
analyze_btn.click(
fn=analyzer.analyze,
inputs=file_input,
outputs=[output_display, report_download],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"Error launching application: {str(e)}")
sys.exit(1) |