CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
9618ebe verified
raw
history blame
12.8 kB
import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from threading import Thread, Lock
import re
import tempfile
import threading
# ---------------------------------------------------------------------------------------
# Setup persistent directories for Hugging Face Spaces
# ---------------------------------------------------------------------------------------
# Use a persistent cache directory (adjust the path as needed based on your HF Space settings)
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
# Set environment variables so that model and transformers caches point to persistent storage.
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Append the local source path if needed
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
# ---------------------------------------------------------------------------------------
# Import the TxAgent from your tool package
# ---------------------------------------------------------------------------------------
from txagent.txagent import TxAgent
# ---------------------------------------------------------------------------------------
# Define constants and helper functions
# ---------------------------------------------------------------------------------------
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
# Process first three pages always
for i, page in enumerate(pdf.pages[:3]):
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
# Process subsequent pages only if they contain key medical keywords
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
Thread(target=full_pdf_processing, args=(file_path, h)).start()
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def full_pdf_processing(file_path: str, file_hash_value: str):
try:
cache_path = os.path.join(file_cache_dir, f"{file_hash_value}_full.json")
if os.path.exists(cache_path):
return
with pdfplumber.open(file_path) as pdf:
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
for i, page in enumerate(pdf.pages)])
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
with open(os.path.join(report_dir, f"{file_hash_value}_report.txt"), "w", encoding="utf-8") as out:
out.write(full_text)
except Exception as e:
print(f"Background processing failed: {str(e)}")
# ---------------------------------------------------------------------------------------
# Global agent variable and thread-safe lock for background model loading
# ---------------------------------------------------------------------------------------
agent = None
agent_lock = Lock()
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
new_agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
new_agent.init_model()
return new_agent
def load_agent_in_background():
global agent
with agent_lock:
if agent is None:
print("Initializing agent in background (this may take a while)...")
agent = init_agent()
print("Agent initialization complete.")
# Start background agent loading at startup
threading.Thread(target=load_agent_in_background, daemon=True).start()
# ---------------------------------------------------------------------------------------
# Define the Gradio UI
# ---------------------------------------------------------------------------------------
def create_ui():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
""")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze_potential_oversights(message: str, history: list, files: list):
global agent
# Append user and interim assistant message
history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
]
yield history, None
if agent is None:
history.append({"role": "assistant",
"content": "🕒 The model is still loading. Please wait a moment and try again."})
yield history, None
return
extracted_data = ""
file_hash_value = ""
if files and isinstance(files, list):
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [
executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')
]
results = []
for future in as_completed(futures):
results.append(sanitize_utf8(future.result()))
extracted_data = "\n".join(results)
file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""
# Truncate extracted data to avoid token overflow
max_extracted_chars = 12000
truncated_data = extracted_data[:max_extracted_chars]
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{truncated_data}
### Potential Oversights:
"""
response = ""
try:
# Stream agent responses and update the last message in the conversation with each chunk.
for chunk in agent.run_gradio_chat(
message=analysis_prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[]
):
if chunk is None:
continue
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join([c.content for c in chunk if hasattr(c, 'content')])
cleaned = response.replace("[TOOL_CALLS]", "").strip()
# Update the assistant message (last item in history) with the latest accumulated answer
history[-1] = {"role": "assistant", "content": cleaned}
yield history, None
except Exception as agent_error:
history[-1] = {"role": "assistant", "content": f"❌ Analysis failed during processing: {str(agent_error)}"}
yield history, None
return
final_output = response.replace("[TOOL_CALLS]", "").strip()
if not final_output:
final_output = "No clear oversights identified. Recommend comprehensive review."
# Update the assistant's message with the final output
history[-1] = {"role": "assistant", "content": final_output}
report_path = None
if file_hash_value:
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
if os.path.exists(possible_report):
report_path = possible_report
yield history, report_path
send_btn.click(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
msg_input.submit(analyze_potential_oversights,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output])
gr.Examples([["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"]],
inputs=msg_input)
return demo
if __name__ == "__main__":
print("Launching interface...")
demo = create_ui()
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)