CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
9a8092d verified
raw
history blame
10.7 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def parse_excel_to_prompts(file_path: str) -> List[str]:
try:
xl = pd.ExcelFile(file_path)
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
groups = df.groupby("Booking Number")
prompts = []
for booking, group in groups:
records = []
for _, row in group.iterrows():
record = f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}"
records.append(clean_response(record))
record_text = "\n".join(records)
prompt = f"""
Patient Booking Number: {booking}
Instructions:
Analyze the following patient case for missed diagnoses, medication conflicts, incomplete assessments, and any urgent follow-up needed. Summarize under the markdown headings.
Data:
{record_text}
### Missed Diagnoses
- ...
### Medication Conflicts
- ...
### Incomplete Assessments
- ...
### Urgent Follow-up
- ...
"""
prompts.append(prompt)
return prompts
except Exception as e:
raise ValueError(f"Error parsing Excel file: {str(e)}")
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process each patient record
4. **Review Results**: Analysis appears in the chat window
5. **Download Report**: Get a full text report of all findings
### Excel File Requirements
Your Excel file must contain these columns:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
### Analysis Includes
- Missed diagnoses
- Medication conflicts
- Incomplete assessments
- Urgent follow-up needs
""")
def format_message(role: str, content: str) -> Tuple[str, str]:
"""Format messages for the chatbot in (user, bot) format"""
if role == "user":
return (content, None)
else:
return (None, content)
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history with user message
new_history = chat_history + [format_message("user", message)]
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
yield new_history, None
prompts = parse_excel_to_prompts(file.name)
full_output = ""
for idx, prompt in enumerate(prompts, 1):
chunk_output = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
chunk_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
chunk_output += cleaned + "\n"
if chunk_output:
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
new_history[-1] = format_message("assistant", output)
yield new_history, None
except Exception as e:
error_msg = f"⚠️ Error processing booking {idx}: {str(e)}"
new_history.append(format_message("assistant", error_msg))
yield new_history, None
continue
if chunk_output:
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
new_history.append(format_message("assistant", output))
full_output += output + "\n"
yield new_history, None
# Save report
file_hash_value = file_hash(file.name)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write(full_output)
yield new_history, report_path if os.path.exists(report_path) else None
except Exception as e:
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze"
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1)