CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
6e39ead verified
raw
history blame
9.24 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768
MAX_NEW_TOKENS = 2048
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
data = {
'bookings': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'procedures': defaultdict(list),
'doctors': set(),
'timeline': []
}
df = df.sort_values('Interview Date')
for booking, group in df.groupby('Booking Number'):
for _, row in group.iterrows():
entry = {
'booking': booking,
'date': str(row['Interview Date']),
'doctor': str(row['Interviewer']),
'form': str(row['Form Name']),
'item': str(row['Form Item']),
'response': str(row['Item Response']),
'notes': str(row['Description'])
}
data['bookings'][booking].append(entry)
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower or 'condition' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
data['tests'][entry['item']].append(entry)
elif 'procedure' in form_lower or 'surgery' in form_lower:
data['procedures'][entry['item']].append(entry)
return data
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
prompt_lines = [
"### Patient Clinical Reasoning Task",
"",
"**Instructions for the AI model:**",
"You are a clinical assistant reviewing the complete timeline of a single patient.",
"Use the following structured timeline and medication history to identify:",
"- Missed diagnoses",
"- Medication errors or inconsistencies",
"- Lack of follow-up",
"- Inconsistencies between providers",
"- Any signs doctors may have overlooked",
"",
"**Patient History Timeline:**"
]
for entry in patient_data['timeline']:
if entry['booking'] in bookings:
prompt_lines.append(
f"- [{entry['date']}] {entry['form']}: {entry['item']}{entry['response']} ({entry['doctor']})"
)
prompt_lines.append("\n**Medication History:**")
for med, entries in patient_data['medications'].items():
history = " → ".join(
f"[{e['date']}] {e['response']}" for e in entries if e['booking'] in bookings
)
prompt_lines.append(f"- {med}: {history}")
prompt_lines.append("\n**Instructions:**")
prompt_lines.append("Analyze this data to generate clinical insights.")
prompt_lines.append("Structure your response as follows:\n")
prompt_lines.extend([
"### Diagnostic Patterns",
"### Medication Analysis",
"### Missed Opportunities",
"### Inconsistencies",
"### Recommendations"
])
return "\n".join(prompt_lines)
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def analyze_with_agent(agent, prompt: str) -> str:
try:
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += clean_response(r.content) + "\n"
elif isinstance(result, str):
response += clean_response(result) + "\n"
elif hasattr(result, 'content'):
response += clean_response(result.content) + "\n"
return response.strip()
except Exception as e:
return f"Error in analysis: {str(e)}"
def analyze(file):
if not file:
raise gr.Error("Please upload a file")
try:
df = pd.read_excel(file.name)
patient_data = process_patient_data(df)
all_bookings = list(patient_data['bookings'].keys())
# Chunking logic based on estimated token limits
chunks = []
current_chunk = []
current_size = 0
for booking in all_bookings:
booking_entries = patient_data['bookings'][booking]
booking_prompt = generate_analysis_prompt(patient_data, [booking])
token_count = estimate_tokens(booking_prompt)
if current_size + token_count > MAX_TOKENS:
if current_chunk:
chunks.append(current_chunk)
current_chunk = [booking]
current_size = token_count
else:
current_chunk.append(booking)
current_size += token_count
if current_chunk:
chunks.append(current_chunk)
chunk_responses = []
for chunk in chunks:
prompt = generate_analysis_prompt(patient_data, chunk) + "\n\n" + "\n".join([
"**Please analyze this part of the patient history.**",
"Focus on identifying patterns, issues, and possible missed opportunities."
])
chunk_responses.append(analyze_with_agent(agent, prompt))
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key insights, missed diagnoses, medication issues, inconsistencies and follow-up recommendations in a clear and structured way."
final_response = analyze_with_agent(agent, final_prompt)
full_report = f"# \U0001f9e0 Full Patient History Analysis\n\n{final_response}"
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(full_report)
return [("user", "[Excel Uploaded: Processing Analysis...]"), ("assistant", full_report)], report_path
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def create_ui(agent):
with gr.Blocks(title="Patient History Chat") as demo:
chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True)
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("🧠 Analyze Patient History")
report_output = gr.File(label="Download Report")
analyze_btn.click(
analyze,
inputs=[file_upload],
outputs=[chatbot, report_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"]
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)