|
import sys |
|
import os |
|
import pandas as pd |
|
import json |
|
import gradio as gr |
|
from typing import List, Tuple, Dict, Any |
|
import hashlib |
|
import shutil |
|
import re |
|
from datetime import datetime |
|
import time |
|
from collections import defaultdict |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MAX_TOKENS = 32768 |
|
MAX_NEW_TOKENS = 2048 |
|
|
|
|
|
def clean_response(text: str) -> str: |
|
try: |
|
text = text.encode('utf-8', 'surrogatepass').decode('utf-8') |
|
except UnicodeError: |
|
text = text.encode('utf-8', 'replace').decode('utf-8') |
|
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) |
|
return text.strip() |
|
|
|
|
|
def estimate_tokens(text: str) -> int: |
|
return len(text) // 3.5 |
|
|
|
|
|
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]: |
|
data = { |
|
'bookings': defaultdict(list), |
|
'medications': defaultdict(list), |
|
'diagnoses': defaultdict(list), |
|
'tests': defaultdict(list), |
|
'procedures': defaultdict(list), |
|
'doctors': set(), |
|
'timeline': [] |
|
} |
|
|
|
df = df.sort_values('Interview Date') |
|
for booking, group in df.groupby('Booking Number'): |
|
for _, row in group.iterrows(): |
|
entry = { |
|
'booking': booking, |
|
'date': str(row['Interview Date']), |
|
'doctor': str(row['Interviewer']), |
|
'form': str(row['Form Name']), |
|
'item': str(row['Form Item']), |
|
'response': str(row['Item Response']), |
|
'notes': str(row['Description']) |
|
} |
|
|
|
data['bookings'][booking].append(entry) |
|
data['timeline'].append(entry) |
|
data['doctors'].add(entry['doctor']) |
|
|
|
form_lower = entry['form'].lower() |
|
if 'medication' in form_lower or 'drug' in form_lower: |
|
data['medications'][entry['item']].append(entry) |
|
elif 'diagnosis' in form_lower or 'condition' in form_lower: |
|
data['diagnoses'][entry['item']].append(entry) |
|
elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower: |
|
data['tests'][entry['item']].append(entry) |
|
elif 'procedure' in form_lower or 'surgery' in form_lower: |
|
data['procedures'][entry['item']].append(entry) |
|
|
|
return data |
|
|
|
|
|
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str: |
|
prompt_lines = [ |
|
"### Patient Clinical Reasoning Task", |
|
"", |
|
"**Instructions for the AI model:**", |
|
"You are a clinical assistant reviewing the complete timeline of a single patient.", |
|
"Use the following structured timeline and medication history to identify:", |
|
"- Missed diagnoses", |
|
"- Medication errors or inconsistencies", |
|
"- Lack of follow-up", |
|
"- Inconsistencies between providers", |
|
"- Any signs doctors may have overlooked", |
|
"", |
|
"**Patient History Timeline:**" |
|
] |
|
|
|
for entry in patient_data['timeline']: |
|
if entry['booking'] in bookings: |
|
prompt_lines.append( |
|
f"- [{entry['date']}] {entry['form']}: {entry['item']} → {entry['response']} ({entry['doctor']})" |
|
) |
|
|
|
prompt_lines.append("\n**Medication History:**") |
|
for med, entries in patient_data['medications'].items(): |
|
history = " → ".join( |
|
f"[{e['date']}] {e['response']}" for e in entries if e['booking'] in bookings |
|
) |
|
prompt_lines.append(f"- {med}: {history}") |
|
|
|
prompt_lines.append("\n**Instructions:**") |
|
prompt_lines.append("Analyze this data to generate clinical insights.") |
|
prompt_lines.append("Structure your response as follows:\n") |
|
prompt_lines.extend([ |
|
"### Diagnostic Patterns", |
|
"### Medication Analysis", |
|
"### Missed Opportunities", |
|
"### Inconsistencies", |
|
"### Recommendations" |
|
]) |
|
|
|
return "\n".join(prompt_lines) |
|
|
|
|
|
def init_agent(): |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
|
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[] |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
|
|
def analyze_with_agent(agent, prompt: str) -> str: |
|
try: |
|
response = "" |
|
for result in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, 'content') and r.content: |
|
response += clean_response(r.content) + "\n" |
|
elif isinstance(result, str): |
|
response += clean_response(result) + "\n" |
|
elif hasattr(result, 'content'): |
|
response += clean_response(result.content) + "\n" |
|
return response.strip() |
|
except Exception as e: |
|
return f"Error in analysis: {str(e)}" |
|
|
|
|
|
def analyze(file): |
|
if not file: |
|
raise gr.Error("Please upload a file") |
|
|
|
try: |
|
df = pd.read_excel(file.name) |
|
patient_data = process_patient_data(df) |
|
all_bookings = list(patient_data['bookings'].keys()) |
|
|
|
|
|
chunks = [] |
|
current_chunk = [] |
|
current_size = 0 |
|
|
|
for booking in all_bookings: |
|
booking_entries = patient_data['bookings'][booking] |
|
booking_prompt = generate_analysis_prompt(patient_data, [booking]) |
|
token_count = estimate_tokens(booking_prompt) |
|
if current_size + token_count > MAX_TOKENS: |
|
if current_chunk: |
|
chunks.append(current_chunk) |
|
current_chunk = [booking] |
|
current_size = token_count |
|
else: |
|
current_chunk.append(booking) |
|
current_size += token_count |
|
|
|
if current_chunk: |
|
chunks.append(current_chunk) |
|
|
|
chunk_responses = [] |
|
for chunk in chunks: |
|
prompt = generate_analysis_prompt(patient_data, chunk) + "\n\n" + "\n".join([ |
|
"**Please analyze this part of the patient history.**", |
|
"Focus on identifying patterns, issues, and possible missed opportunities." |
|
]) |
|
chunk_responses.append(analyze_with_agent(agent, prompt)) |
|
|
|
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key insights, missed diagnoses, medication issues, inconsistencies and follow-up recommendations in a clear and structured way." |
|
final_response = analyze_with_agent(agent, final_prompt) |
|
full_report = f"# \U0001f9e0 Full Patient History Analysis\n\n{final_response}" |
|
|
|
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") |
|
with open(report_path, 'w') as f: |
|
f.write(full_report) |
|
|
|
return [("user", "[Excel Uploaded: Processing Analysis...]"), ("assistant", full_report)], report_path |
|
|
|
except Exception as e: |
|
raise gr.Error(f"Error: {str(e)}") |
|
|
|
|
|
def create_ui(agent): |
|
with gr.Blocks(title="Patient History Chat") as demo: |
|
chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True) |
|
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"]) |
|
analyze_btn = gr.Button("🧠 Analyze Patient History") |
|
report_output = gr.File(label="Download Report") |
|
|
|
analyze_btn.click( |
|
analyze, |
|
inputs=[file_upload], |
|
outputs=[chatbot, report_output] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
try: |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=["/data/hf_cache/reports"] |
|
) |
|
except Exception as e: |
|
print(f"Error: {str(e)}") |
|
sys.exit(1) |
|
|