File size: 9,237 Bytes
f75a23b f394b25 d184610 f6e551c f394b25 d16299c a7e68bf 1244d40 d16299c 1c5bd8e d16299c d184610 d8282f1 f6e551c d16299c f6e551c f75a23b d16299c 1244d40 1de8c2b 13ad0d3 f6e551c d16299c f6e551c d16299c f6e551c d16299c 6e39ead f6e551c 6e39ead d16299c f6e551c d16299c 6e39ead d16299c a7e68bf 6e39ead d16299c f6e551c 6e39ead d16299c f6e551c d16299c f6e551c d16299c f6e551c d16299c f6e551c 6e39ead d16299c 1c5bd8e 6e39ead 13ad0d3 f6e551c 28e1ce8 13ad0d3 28e1ce8 f6e551c 28e1ce8 13ad0d3 28e1ce8 13ad0d3 f6e551c 28e1ce8 f6e551c 28e1ce8 f6e551c 28e1ce8 f6e551c 13ad0d3 28e1ce8 f6e551c d184610 d16299c f6e551c 6e39ead f6e551c 6e39ead f6e551c d16299c f6e551c d16299c 13ad0d3 d16299c f6e551c d16299c 6e39ead d16299c f6e551c d16299c 6e39ead affa0af 6e39ead affa0af 6e39ead affa0af 6e39ead affa0af 6e39ead affa0af 6e39ead affa0af 6e39ead affa0af 6e39ead d16299c 6e39ead 13ad0d3 6e39ead d8282f1 6e39ead a71a831 55e3db0 6e39ead f394b25 d8282f1 d16299c 13ad0d3 d8282f1 1bdb280 f6e551c d8282f1 13ad0d3 6e39ead |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768
MAX_NEW_TOKENS = 2048
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
data = {
'bookings': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'procedures': defaultdict(list),
'doctors': set(),
'timeline': []
}
df = df.sort_values('Interview Date')
for booking, group in df.groupby('Booking Number'):
for _, row in group.iterrows():
entry = {
'booking': booking,
'date': str(row['Interview Date']),
'doctor': str(row['Interviewer']),
'form': str(row['Form Name']),
'item': str(row['Form Item']),
'response': str(row['Item Response']),
'notes': str(row['Description'])
}
data['bookings'][booking].append(entry)
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower or 'condition' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
data['tests'][entry['item']].append(entry)
elif 'procedure' in form_lower or 'surgery' in form_lower:
data['procedures'][entry['item']].append(entry)
return data
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
prompt_lines = [
"### Patient Clinical Reasoning Task",
"",
"**Instructions for the AI model:**",
"You are a clinical assistant reviewing the complete timeline of a single patient.",
"Use the following structured timeline and medication history to identify:",
"- Missed diagnoses",
"- Medication errors or inconsistencies",
"- Lack of follow-up",
"- Inconsistencies between providers",
"- Any signs doctors may have overlooked",
"",
"**Patient History Timeline:**"
]
for entry in patient_data['timeline']:
if entry['booking'] in bookings:
prompt_lines.append(
f"- [{entry['date']}] {entry['form']}: {entry['item']} → {entry['response']} ({entry['doctor']})"
)
prompt_lines.append("\n**Medication History:**")
for med, entries in patient_data['medications'].items():
history = " → ".join(
f"[{e['date']}] {e['response']}" for e in entries if e['booking'] in bookings
)
prompt_lines.append(f"- {med}: {history}")
prompt_lines.append("\n**Instructions:**")
prompt_lines.append("Analyze this data to generate clinical insights.")
prompt_lines.append("Structure your response as follows:\n")
prompt_lines.extend([
"### Diagnostic Patterns",
"### Medication Analysis",
"### Missed Opportunities",
"### Inconsistencies",
"### Recommendations"
])
return "\n".join(prompt_lines)
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def analyze_with_agent(agent, prompt: str) -> str:
try:
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += clean_response(r.content) + "\n"
elif isinstance(result, str):
response += clean_response(result) + "\n"
elif hasattr(result, 'content'):
response += clean_response(result.content) + "\n"
return response.strip()
except Exception as e:
return f"Error in analysis: {str(e)}"
def analyze(file):
if not file:
raise gr.Error("Please upload a file")
try:
df = pd.read_excel(file.name)
patient_data = process_patient_data(df)
all_bookings = list(patient_data['bookings'].keys())
# Chunking logic based on estimated token limits
chunks = []
current_chunk = []
current_size = 0
for booking in all_bookings:
booking_entries = patient_data['bookings'][booking]
booking_prompt = generate_analysis_prompt(patient_data, [booking])
token_count = estimate_tokens(booking_prompt)
if current_size + token_count > MAX_TOKENS:
if current_chunk:
chunks.append(current_chunk)
current_chunk = [booking]
current_size = token_count
else:
current_chunk.append(booking)
current_size += token_count
if current_chunk:
chunks.append(current_chunk)
chunk_responses = []
for chunk in chunks:
prompt = generate_analysis_prompt(patient_data, chunk) + "\n\n" + "\n".join([
"**Please analyze this part of the patient history.**",
"Focus on identifying patterns, issues, and possible missed opportunities."
])
chunk_responses.append(analyze_with_agent(agent, prompt))
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key insights, missed diagnoses, medication issues, inconsistencies and follow-up recommendations in a clear and structured way."
final_response = analyze_with_agent(agent, final_prompt)
full_report = f"# \U0001f9e0 Full Patient History Analysis\n\n{final_response}"
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(full_report)
return [("user", "[Excel Uploaded: Processing Analysis...]"), ("assistant", full_report)], report_path
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def create_ui(agent):
with gr.Blocks(title="Patient History Chat") as demo:
chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True)
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("🧠 Analyze Patient History")
report_output = gr.File(label="Download Report")
analyze_btn.click(
analyze,
inputs=[file_upload],
outputs=[chatbot, report_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"]
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)
|