File size: 9,237 Bytes
f75a23b
f394b25
d184610
f6e551c
f394b25
d16299c
a7e68bf
1244d40
d16299c
1c5bd8e
d16299c
d184610
d8282f1
f6e551c
 
 
d16299c
f6e551c
 
 
 
 
 
 
 
 
 
f75a23b
d16299c
 
 
1244d40
 
 
1de8c2b
13ad0d3
 
f6e551c
d16299c
 
f6e551c
 
 
 
d16299c
 
f6e551c
d16299c
 
6e39ead
f6e551c
 
 
6e39ead
d16299c
 
 
 
 
 
f6e551c
 
d16299c
 
6e39ead
d16299c
 
 
 
 
 
 
 
 
 
 
a7e68bf
6e39ead
d16299c
 
f6e551c
6e39ead
d16299c
f6e551c
d16299c
f6e551c
d16299c
f6e551c
d16299c
f6e551c
 
6e39ead
d16299c
1c5bd8e
6e39ead
13ad0d3
f6e551c
28e1ce8
13ad0d3
28e1ce8
 
 
 
 
 
 
 
f6e551c
28e1ce8
13ad0d3
28e1ce8
13ad0d3
 
f6e551c
28e1ce8
f6e551c
28e1ce8
 
 
 
 
 
 
 
 
 
 
f6e551c
 
 
 
28e1ce8
f6e551c
13ad0d3
28e1ce8
f6e551c
 
d184610
d16299c
f6e551c
 
6e39ead
f6e551c
 
6e39ead
f6e551c
d16299c
 
f6e551c
d16299c
 
 
 
13ad0d3
d16299c
f6e551c
 
d16299c
6e39ead
d16299c
 
 
 
 
 
 
 
 
 
 
 
f6e551c
 
 
 
 
d16299c
 
 
 
 
 
 
6e39ead
affa0af
 
 
 
 
 
 
 
 
6e39ead
 
 
 
affa0af
6e39ead
 
 
 
 
 
 
 
 
 
 
 
affa0af
6e39ead
 
affa0af
6e39ead
 
 
 
 
 
 
affa0af
6e39ead
 
 
 
 
affa0af
 
 
6e39ead
affa0af
 
 
 
6e39ead
d16299c
6e39ead
 
 
 
 
 
13ad0d3
 
6e39ead
 
d8282f1
6e39ead
a71a831
55e3db0
6e39ead
f394b25
d8282f1
d16299c
 
13ad0d3
d8282f1
 
1bdb280
f6e551c
d8282f1
 
13ad0d3
6e39ead
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MAX_TOKENS = 32768
MAX_NEW_TOKENS = 2048


def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()


def estimate_tokens(text: str) -> int:
    return len(text) // 3.5


def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
    data = {
        'bookings': defaultdict(list),
        'medications': defaultdict(list),
        'diagnoses': defaultdict(list),
        'tests': defaultdict(list),
        'procedures': defaultdict(list),
        'doctors': set(),
        'timeline': []
    }

    df = df.sort_values('Interview Date')
    for booking, group in df.groupby('Booking Number'):
        for _, row in group.iterrows():
            entry = {
                'booking': booking,
                'date': str(row['Interview Date']),
                'doctor': str(row['Interviewer']),
                'form': str(row['Form Name']),
                'item': str(row['Form Item']),
                'response': str(row['Item Response']),
                'notes': str(row['Description'])
            }

            data['bookings'][booking].append(entry)
            data['timeline'].append(entry)
            data['doctors'].add(entry['doctor'])

            form_lower = entry['form'].lower()
            if 'medication' in form_lower or 'drug' in form_lower:
                data['medications'][entry['item']].append(entry)
            elif 'diagnosis' in form_lower or 'condition' in form_lower:
                data['diagnoses'][entry['item']].append(entry)
            elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
                data['tests'][entry['item']].append(entry)
            elif 'procedure' in form_lower or 'surgery' in form_lower:
                data['procedures'][entry['item']].append(entry)

    return data


def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
    prompt_lines = [
        "### Patient Clinical Reasoning Task",
        "",
        "**Instructions for the AI model:**",
        "You are a clinical assistant reviewing the complete timeline of a single patient.",
        "Use the following structured timeline and medication history to identify:",
        "- Missed diagnoses",
        "- Medication errors or inconsistencies",
        "- Lack of follow-up",
        "- Inconsistencies between providers",
        "- Any signs doctors may have overlooked",
        "",
        "**Patient History Timeline:**"
    ]

    for entry in patient_data['timeline']:
        if entry['booking'] in bookings:
            prompt_lines.append(
                f"- [{entry['date']}] {entry['form']}: {entry['item']}{entry['response']} ({entry['doctor']})"
            )

    prompt_lines.append("\n**Medication History:**")
    for med, entries in patient_data['medications'].items():
        history = " → ".join(
            f"[{e['date']}] {e['response']}" for e in entries if e['booking'] in bookings
        )
        prompt_lines.append(f"- {med}: {history}")

    prompt_lines.append("\n**Instructions:**")
    prompt_lines.append("Analyze this data to generate clinical insights.")
    prompt_lines.append("Structure your response as follows:\n")
    prompt_lines.extend([
        "### Diagnostic Patterns",
        "### Medication Analysis",
        "### Missed Opportunities",
        "### Inconsistencies",
        "### Recommendations"
    ])

    return "\n".join(prompt_lines)


def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")

    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[]
    )
    agent.init_model()
    return agent


def analyze_with_agent(agent, prompt: str) -> str:
    try:
        response = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, list):
                for r in result:
                    if hasattr(r, 'content') and r.content:
                        response += clean_response(r.content) + "\n"
            elif isinstance(result, str):
                response += clean_response(result) + "\n"
            elif hasattr(result, 'content'):
                response += clean_response(result.content) + "\n"
        return response.strip()
    except Exception as e:
        return f"Error in analysis: {str(e)}"


def analyze(file):
    if not file:
        raise gr.Error("Please upload a file")

    try:
        df = pd.read_excel(file.name)
        patient_data = process_patient_data(df)
        all_bookings = list(patient_data['bookings'].keys())

        # Chunking logic based on estimated token limits
        chunks = []
        current_chunk = []
        current_size = 0

        for booking in all_bookings:
            booking_entries = patient_data['bookings'][booking]
            booking_prompt = generate_analysis_prompt(patient_data, [booking])
            token_count = estimate_tokens(booking_prompt)
            if current_size + token_count > MAX_TOKENS:
                if current_chunk:
                    chunks.append(current_chunk)
                current_chunk = [booking]
                current_size = token_count
            else:
                current_chunk.append(booking)
                current_size += token_count

        if current_chunk:
            chunks.append(current_chunk)

        chunk_responses = []
        for chunk in chunks:
            prompt = generate_analysis_prompt(patient_data, chunk) + "\n\n" + "\n".join([
                "**Please analyze this part of the patient history.**",
                "Focus on identifying patterns, issues, and possible missed opportunities."
            ])
            chunk_responses.append(analyze_with_agent(agent, prompt))

        final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key insights, missed diagnoses, medication issues, inconsistencies and follow-up recommendations in a clear and structured way."
        final_response = analyze_with_agent(agent, final_prompt)
        full_report = f"# \U0001f9e0 Full Patient History Analysis\n\n{final_response}"

        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w') as f:
            f.write(full_report)

        return [("user", "[Excel Uploaded: Processing Analysis...]"), ("assistant", full_report)], report_path

    except Exception as e:
        raise gr.Error(f"Error: {str(e)}")


def create_ui(agent):
    with gr.Blocks(title="Patient History Chat") as demo:
        chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True)
        file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
        analyze_btn = gr.Button("🧠 Analyze Patient History")
        report_output = gr.File(label="Download Report")

        analyze_btn.click(
            analyze,
            inputs=[file_upload],
            outputs=[chatbot, report_output]
        )

    return demo


if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=["/data/hf_cache/reports"]
        )
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)