CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
650fb34 verified
raw
history blame
19.3 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Tuple, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
from datetime import datetime
import tiktoken
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations',
'conclusion', 'history', 'examination', 'progress', 'discharge'
}
TOKENIZER = "cl100k_base"
MAX_MODEL_LEN = 2048 # Matches your model's actual limit
TARGET_CHUNK_TOKENS = 1500 # Leaves room for prompt and response
MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ==="
def sanitize_utf8(text: str) -> str:
"""Ensure text is UTF-8 clean."""
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
"""Generate MD5 hash of file content."""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def count_tokens(text: str) -> int:
"""Count tokens using the same method as the model"""
encoding = tiktoken.get_encoding(TOKENIZER)
return len(encoding.encode(text))
def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]:
"""
Extract all pages from PDF with token counting.
Returns (extracted_text, total_pages, total_tokens)
"""
try:
text_chunks = []
total_pages = 0
total_tokens = 0
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
page_text = page.extract_text() or ""
lower_text = page_text.lower()
# Mark medical sections
if any(re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS):
section_header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n"
text_chunks.append(section_header + page_text.strip())
total_tokens += count_tokens(section_header)
else:
text_chunks.append(f"\n=== Page {i+1} ===\n{page_text.strip()}")
total_tokens += count_tokens(page_text)
return "\n".join(text_chunks), total_pages, total_tokens
except Exception as e:
return f"PDF processing error: {str(e)}", 0, 0
def convert_file_to_json(file_path: str, file_type: str) -> str:
"""Convert file to JSON format with caching and token counting."""
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path)
result = json.dumps({
"filename": os.path.basename(file_path),
"content": text,
"total_pages": total_pages,
"total_tokens": total_tokens,
"status": "complete"
})
elif file_type == "csv":
# Read CSV in chunks to handle large files
chunks = []
for chunk in pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip", chunksize=1000):
chunks.append(chunk.fillna("").astype(str).values.tolist())
content = [item for sublist in chunks for item in sublist]
result = json.dumps({
"filename": os.path.basename(file_path),
"rows": content,
"total_tokens": count_tokens(str(content))
})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({
"filename": os.path.basename(file_path),
"rows": content,
"total_tokens": count_tokens(str(content))
})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
"""Log system resource usage."""
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
"""Clean and format the model response."""
text = sanitize_utf8(text)
# Remove tool calls and JSON artifacts
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
text = re.sub(r"\['get_[^\]]+\']\n?", "", text)
text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
# Remove repetitive phrases
text = re.sub(r"To analyze the medical records for clinical oversights.*?begin by reviewing.*?\n", "", text, flags=re.DOTALL)
# Collapse excessive newlines
text = re.sub(r"\n{3,}", "\n\n", text).strip()
return text
def format_final_report(analysis_results: List[str], filename: str) -> str:
"""Combine all analysis chunks into a well-formatted final report."""
report = []
report.append(f"COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS")
report.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
report.append(f"File: {filename}")
report.append("=" * 80)
# Extract sections from all chunks
sections = {
"CRITICAL FINDINGS": [],
"MISSED DIAGNOSES": [],
"MEDICATION ISSUES": [],
"ASSESSMENT GAPS": [],
"FOLLOW-UP RECOMMENDATIONS": []
}
for result in analysis_results:
for section in sections:
# Find section content using regex
section_match = re.search(
rf"{re.escape(section)}:?\s*\n([^*]+?)(?=\n\*|\n\n|$)",
result,
re.IGNORECASE | re.DOTALL
)
if section_match:
content = section_match.group(1).strip()
if content and content not in sections[section]:
sections[section].append(content)
# Build the final report - prioritize critical findings
if sections["CRITICAL FINDINGS"]:
report.append("\n🚨 **CRITICAL FINDINGS** 🚨")
for content in sections["CRITICAL FINDINGS"]:
report.append(f"\n{content}")
# Add other sections
for section, contents in sections.items():
if section != "CRITICAL FINDINGS" and contents:
report.append(f"\n**{section.upper()}**")
for content in contents:
report.append(f"\n{content}")
if not any(sections.values()):
report.append("\nNo significant clinical oversights identified.")
report.append("\n" + "=" * 80)
report.append("END OF REPORT")
return "\n".join(report)
def split_content_by_tokens(content: str, max_tokens: int = TARGET_CHUNK_TOKENS) -> List[str]:
"""Split content into chunks that fit within token limits"""
paragraphs = re.split(r"\n\s*\n", content)
chunks = []
current_chunk = []
current_tokens = 0
for para in paragraphs:
para_tokens = count_tokens(para)
if para_tokens > max_tokens:
# Handle very long paragraphs by splitting sentences
sentences = re.split(r'(?<=[.!?])\s+', para)
for sent in sentences:
sent_tokens = count_tokens(sent)
if current_tokens + sent_tokens > max_tokens:
chunks.append("\n\n".join(current_chunk))
current_chunk = [sent]
current_tokens = sent_tokens
else:
current_chunk.append(sent)
current_tokens += sent_tokens
elif current_tokens + para_tokens > max_tokens:
chunks.append("\n\n".join(current_chunk))
current_chunk = [para]
current_tokens = para_tokens
else:
current_chunk.append(para)
current_tokens += para_tokens
if current_chunk:
chunks.append("\n\n".join(current_chunk))
return chunks
def init_agent():
"""Initialize the TxAgent with proper configuration."""
print("🔁 Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=2,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("✅ Agent Ready")
return agent
def analyze_complete_document(content: str, filename: str, agent: TxAgent) -> str:
"""Analyze complete document with proper chunking and token management"""
chunks = split_content_by_tokens(content)
analysis_results = []
for i, chunk in enumerate(chunks):
try:
# Create minimal prompt to save tokens
prompt = f"""
Analyze this medical record section for:
1. Critical findings (urgent)
2. Missed diagnoses (with evidence)
3. Medication issues
4. Assessment gaps
5. Follow-up needs
Content:
{chunk}
Concise findings only:
"""
# Verify we're within token limits
prompt_tokens = count_tokens(prompt)
chunk_tokens = count_tokens(chunk)
if prompt_tokens + chunk_tokens > MAX_MODEL_LEN - 512: # Leave room for response
# Find a natural truncation point
adjusted_chunk = ""
tokens_used = 0
max_content_tokens = MAX_MODEL_LEN - prompt_tokens - 512
for para in re.split(r"\n\s*\n", chunk):
para_tokens = count_tokens(para)
if tokens_used + para_tokens <= max_content_tokens:
adjusted_chunk += "\n\n" + para
tokens_used += para_tokens
else:
break
if not adjusted_chunk:
# If even one paragraph is too long, split sentences
sentences = re.split(r'(?<=[.!?])\s+', chunk)
for sent in sentences:
sent_tokens = count_tokens(sent)
if tokens_used + sent_tokens <= max_content_tokens:
adjusted_chunk += " " + sent
tokens_used += sent_tokens
else:
break
chunk = adjusted_chunk.strip()
response = ""
for output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.1,
max_new_tokens=512, # Keep responses concise
max_token=MAX_MODEL_LEN,
call_agent=False,
conversation=[],
):
if output:
if isinstance(output, list):
for m in output:
if hasattr(m, 'content'):
response += clean_response(m.content)
elif isinstance(output, str):
response += clean_response(output)
if response:
analysis_results.append(response)
except Exception as e:
print(f"Error processing chunk {i}: {str(e)}")
continue
return format_final_report(analysis_results, filename)
def create_ui(agent):
"""Create the Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("""
<h1 style='text-align: center;'>🩺 Comprehensive Clinical Oversight Assistant</h1>
<p style='text-align: center;'>Analyze complete medical records for potential oversights</p>
""")
with gr.Row():
with gr.Column(scale=3):
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Medical Records"
)
msg_input = gr.Textbox(
placeholder="Optional: Add specific focus areas or questions...",
label="Analysis Focus"
)
with gr.Row():
send_btn = gr.Button("Analyze Complete Documents", variant="primary")
clear_btn = gr.Button("Clear")
status = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=7):
report_output = gr.Textbox(
label="Clinical Oversight Report",
lines=20,
max_lines=50,
interactive=False
)
download_output = gr.File(
label="Download Full Report",
visible=False
)
def analyze(files: List, message: str):
"""Process files and generate analysis."""
if not files:
yield "", None, "⚠️ Please upload at least one file to analyze."
return
yield "", None, "⏳ Processing documents (this may take several minutes for large files)..."
# Process all files completely
file_contents = []
filenames = []
total_tokens = 0
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
futures.append(executor.submit(
convert_file_to_json,
f.name,
f.name.split(".")[-1].lower()
))
filenames.append(os.path.basename(f.name))
results = []
for future in as_completed(futures):
result = sanitize_utf8(future.result())
results.append(result)
try:
data = json.loads(result)
if "total_tokens" in data:
total_tokens += data["total_tokens"]
except:
pass
file_contents = results
combined_filename = " + ".join(filenames)
combined_content = "\n".join([
json.loads(fc).get("content", "") if "content" in json.loads(fc)
else str(json.loads(fc).get("rows", ""))
for fc in file_contents
])
yield "", None, f"🔍 Analyzing content ({total_tokens//1000}k tokens)..."
try:
# Process the complete document
full_report = analyze_complete_document(
combined_content,
combined_filename,
agent
)
# Save report to file
file_hash_value = hashlib.md5(combined_content.encode()).hexdigest()
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write(full_report)
yield full_report, report_path if os.path.exists(report_path) else None, "✅ Analysis complete!"
except Exception as e:
error_msg = f"❌ Error during analysis: {str(e)}"
print(error_msg)
yield "", None, error_msg
# UI event handlers
send_btn.click(
fn=analyze,
inputs=[file_upload, msg_input],
outputs=[report_output, download_output, status],
api_name="analyze"
)
clear_btn.click(
fn=lambda: ("", None, ""),
inputs=None,
outputs=[report_output, download_output, status]
)
return demo
if __name__ == "__main__":
print("🚀 Launching app...")
# Install tiktoken if not available
try:
import tiktoken
except ImportError:
print("Installing tiktoken...")
subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"])
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)