CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
d313543 verified
raw
history blame
10.7 kB
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess
from collections import defaultdict
from vllm import LLM, SamplingParams # MODIFIED: Direct vLLM for batching
# Persistent directory
persistent_dir = os.getenv("HF_HOME", "/data/hf_cache")
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["VLLM_NO_TORCH_COMPILE"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text() or ""
text_chunks.append(page_text.strip())
return "\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[TOOL_CALLS\].*?\n|\[.*?\].*?\n|(?:get_|tool\s|retrieve\s|use\s|rag\s).*?\n", "", text, flags=re.DOTALL | re.IGNORECASE)
text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
text = re.sub(
r"(?i)(to\s|analyze|will\s|since\s|no\s|none|previous|attempt|involve|check\s|explore|manually|"
r"start|look|use|focus|retrieve|tool|based\s|overall|indicate|mention|consider|ensure|need\s|"
r"provide|review|assess|identify|potential|records|patient|history|symptoms|medication|"
r"conflict|assessment|follow-up|issue|reasoning|step|prompt|address|rag|thought|try|john\sdoe|nkma).*?\n",
"", text, flags=re.DOTALL
)
text = re.sub(r"\n{2,}", "\n", text).strip()
lines = []
valid_heading = False
for line in text.split("\n"):
line = line.strip()
if line.lower() in ["missed diagnoses:", "medication conflicts:", "incomplete assessments:", "urgent follow-up:"]:
valid_heading = True
lines.append(f"**{line[:-1]}**:")
elif valid_heading and line.startswith("-"):
lines.append(line)
else:
valid_heading = False
return "\n".join(lines).strip()
def normalize_text(text: str) -> str:
return re.sub(r"\s+", " ", text.lower().strip())
def consolidate_findings(responses: List[str]) -> str:
findings = defaultdict(set)
headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
for response in responses:
if not response:
continue
current_heading = None
for line in response.split("\n"):
line = line.strip()
if not line:
continue
if line.lower().startswith(tuple(h.lower() + ":" for h in headings)):
current_heading = next(h for h in headings if line.lower().startswith(h.lower() + ":"))
elif current_heading and line.startswith("-"):
findings[current_heading].add(normalize_text(line))
output = []
for heading in headings:
if findings[heading]:
output.append(f"**{heading}**:")
original_lines = {normalize_text(r): r for r in sum([r.split("\n") for r in responses], []) if r.startswith("-")}
output.extend(sorted(original_lines.get(n, "- " + n) for n in findings[heading]))
return "\n".join(output).strip() if output else "No oversights identified."
def init_agent():
print("πŸ” Initializing model...")
log_system_usage("Before Load")
model = LLM(
model="mims-harvard/TxAgent-T1-Llama-3.1-8B",
max_model_len=4096, # MODIFIED: Reduce KV cache
enforce_eager=True,
enable_chunked_prefill=True,
max_num_batched_tokens=8192,
)
log_system_usage("After Load")
print("βœ… Model Ready")
return model
def create_ui(model):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "πŸ”„ Analyzing..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join([json.loads(r).get("content", "") for r in results if "content" in json.loads(r)])
file_hash_value = file_hash(files[0].name) if files else ""
chunk_size = 800
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
chunk_responses = []
batch_size = 8
total_chunks = len(chunks)
prompt_template = """
Output only oversights under these headings, one point each. No tools, reasoning, or extra text.
**Missed Diagnoses**:
**Medication Conflicts**:
**Incomplete Assessments**:
**Urgent Follow-up**:
Records:
{chunk}
"""
sampling_params = SamplingParams(
temperature=0.1,
max_tokens=32, # MODIFIED: Reduce for speed
seed=100,
)
try:
for i in range(0, len(chunks), batch_size):
batch = chunks[i:i + batch_size]
prompts = [prompt_template.format(chunk=chunk) for chunk in batch]
log_system_usage(f"Batch {i//batch_size + 1}")
outputs = model.generate(prompts, sampling_params) # MODIFIED: Batch inference
batch_responses = []
with ThreadPoolExecutor(max_workers=8) as executor: # MODIFIED: Parallel cleanup
futures = [executor.submit(clean_response, output.outputs[0].text) for output in outputs]
batch_responses.extend(f.result() for f in as_completed(futures))
chunk_responses.extend([r for r in batch_responses if r])
processed = min(i + len(batch), total_chunks)
history[-1]["content"] = f"πŸ”„ Analyzing... ({processed}/{total_chunks} chunks)"
yield history, None
final_response = consolidate_findings(chunk_responses)
history[-1]["content"] = final_response
yield history, None
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path and final_response != "No oversights identified.":
with open(report_path, "w", encoding="utf-8") as f:
f.write(final_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("🚨 ERROR:", e)
history[-1]["content"] = f"❌ Error: {str(e)}"
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("πŸš€ Launching app...")
model = init_agent()
demo = create_ui(model)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)