import sys import os import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import re import psutil import subprocess from collections import defaultdict from vllm import LLM, SamplingParams # MODIFIED: Direct vLLM for batching # Persistent directory persistent_dir = os.getenv("HF_HOME", "/data/hf_cache") os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" os.environ["VLLM_NO_TORCH_COMPILE"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_all_pages(file_path: str) -> str: try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for page in pdf.pages: page_text = page.extract_text() or "" text_chunks.append(page_text.strip()) return "\n".join(text_chunks) except Exception as e: return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): with open(cache_path, "r", encoding="utf-8") as f: return f.read() if file_type == "pdf": text = extract_all_pages(file_path) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: print(f"[{tag}] GPU/CPU monitor failed: {e}") def clean_response(text: str) -> str: text = sanitize_utf8(text) text = re.sub(r"\[TOOL_CALLS\].*?\n|\[.*?\].*?\n|(?:get_|tool\s|retrieve\s|use\s|rag\s).*?\n", "", text, flags=re.DOTALL | re.IGNORECASE) text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL) text = re.sub( r"(?i)(to\s|analyze|will\s|since\s|no\s|none|previous|attempt|involve|check\s|explore|manually|" r"start|look|use|focus|retrieve|tool|based\s|overall|indicate|mention|consider|ensure|need\s|" r"provide|review|assess|identify|potential|records|patient|history|symptoms|medication|" r"conflict|assessment|follow-up|issue|reasoning|step|prompt|address|rag|thought|try|john\sdoe|nkma).*?\n", "", text, flags=re.DOTALL ) text = re.sub(r"\n{2,}", "\n", text).strip() lines = [] valid_heading = False for line in text.split("\n"): line = line.strip() if line.lower() in ["missed diagnoses:", "medication conflicts:", "incomplete assessments:", "urgent follow-up:"]: valid_heading = True lines.append(f"**{line[:-1]}**:") elif valid_heading and line.startswith("-"): lines.append(line) else: valid_heading = False return "\n".join(lines).strip() def normalize_text(text: str) -> str: return re.sub(r"\s+", " ", text.lower().strip()) def consolidate_findings(responses: List[str]) -> str: findings = defaultdict(set) headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"] for response in responses: if not response: continue current_heading = None for line in response.split("\n"): line = line.strip() if not line: continue if line.lower().startswith(tuple(h.lower() + ":" for h in headings)): current_heading = next(h for h in headings if line.lower().startswith(h.lower() + ":")) elif current_heading and line.startswith("-"): findings[current_heading].add(normalize_text(line)) output = [] for heading in headings: if findings[heading]: output.append(f"**{heading}**:") original_lines = {normalize_text(r): r for r in sum([r.split("\n") for r in responses], []) if r.startswith("-")} output.extend(sorted(original_lines.get(n, "- " + n) for n in findings[heading])) return "\n".join(output).strip() if output else "No oversights identified." def init_agent(): print("🔁 Initializing model...") log_system_usage("Before Load") model = LLM( model="mims-harvard/TxAgent-T1-Llama-3.1-8B", max_model_len=4096, # MODIFIED: Reduce KV cache enforce_eager=True, enable_chunked_prefill=True, max_num_batched_tokens=8192, ) log_system_usage("After Load") print("✅ Model Ready") return model def create_ui(model): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") chatbot = gr.Chatbot(label="Analysis", height=600, type="messages") file_upload = gr.File(file_types=[".pdf"], file_count="multiple") msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) send_btn = gr.Button("Analyze", variant="primary") download_output = gr.File(label="Download Report") def analyze(message: str, history: List[dict], files: List): history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": "🔄 Analyzing..."}) yield history, None extracted = "" file_hash_value = "" if files: with ThreadPoolExecutor(max_workers=6) as executor: futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files] results = [sanitize_utf8(f.result()) for f in as_completed(futures)] extracted = "\n".join([json.loads(r).get("content", "") for r in results if "content" in json.loads(r)]) file_hash_value = file_hash(files[0].name) if files else "" chunk_size = 800 chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)] chunk_responses = [] batch_size = 8 total_chunks = len(chunks) prompt_template = """ Output only oversights under these headings, one point each. No tools, reasoning, or extra text. **Missed Diagnoses**: **Medication Conflicts**: **Incomplete Assessments**: **Urgent Follow-up**: Records: {chunk} """ sampling_params = SamplingParams( temperature=0.1, max_tokens=32, # MODIFIED: Reduce for speed seed=100, ) try: for i in range(0, len(chunks), batch_size): batch = chunks[i:i + batch_size] prompts = [prompt_template.format(chunk=chunk) for chunk in batch] log_system_usage(f"Batch {i//batch_size + 1}") outputs = model.generate(prompts, sampling_params) # MODIFIED: Batch inference batch_responses = [] with ThreadPoolExecutor(max_workers=8) as executor: # MODIFIED: Parallel cleanup futures = [executor.submit(clean_response, output.outputs[0].text) for output in outputs] batch_responses.extend(f.result() for f in as_completed(futures)) chunk_responses.extend([r for r in batch_responses if r]) processed = min(i + len(batch), total_chunks) history[-1]["content"] = f"🔄 Analyzing... ({processed}/{total_chunks} chunks)" yield history, None final_response = consolidate_findings(chunk_responses) history[-1]["content"] = final_response yield history, None report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None if report_path and final_response != "No oversights identified.": with open(report_path, "w", encoding="utf-8") as f: f.write(final_response) yield history, report_path if report_path and os.path.exists(report_path) else None except Exception as e: print("🚨 ERROR:", e) history[-1]["content"] = f"❌ Error: {str(e)}" yield history, None send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) return demo if __name__ == "__main__": print("🚀 Launching app...") model = init_agent() demo = create_ui(model) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False )