CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
d8282f1 verified
raw
history blame
15.8 kB
import sys
import os
import polars as pl
import json
import gradio as gr
from typing import List, Tuple
import hashlib
import shutil
import re
from datetime import datetime
import time
import asyncio
import aiofiles
import cachetools
import logging
import markdown
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Cache for processed data
cache = cachetools.LRUCache(maxsize=100)
def file_hash(path: str) -> str:
"""Generate MD5 hash of a file."""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean text by removing unwanted characters and normalizing."""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
async def load_and_clean_data(file_path: str) -> pl.DataFrame:
"""Load and clean Excel data using polars."""
try:
logger.info(f"Loading Excel file: {file_path}")
df = pl.read_excel(file_path).with_columns([
pl.col(col).str.strip_chars().fill_null("").alias(col) for col in [
"Booking Number", "Form Name", "Form Item", "Item Response",
"Interviewer", "Interview Date", "Description"
]
]).filter(pl.col("Booking Number").str.starts_with("BKG"))
logger.info(f"Loaded {len(df)} records")
return df
except Exception as e:
logger.error(f"Error loading data: {str(e)}")
raise
def generate_summary(df: pl.DataFrame) -> tuple[str, dict]:
"""Generate summary statistics and interesting fact."""
symptom_counts = {}
for desc in df["Description"]:
desc = desc.lower()
if "chest discomfort" in desc:
symptom_counts["Chest Discomfort"] = symptom_counts.get("Chest Discomfort", 0) + 1
if "headaches" in desc:
symptom_counts["Headaches"] = symptom_counts.get("Headaches", 0) + 1
if "weight loss" in desc:
symptom_counts["Weight Loss"] = symptom_counts.get("Weight Loss", 0) + 1
if "back pain" in desc:
symptom_counts["Chronic Back Pain"] = symptom_counts.get("Chronic Back Pain", 0) + 1
if "cough" in desc:
symptom_counts["Persistent Cough"] = symptom_counts.get("Persistent Cough", 0) + 1
total_records = len(df)
unique_bookings = df["Booking Number"].n_unique()
interesting_fact = (
f"Chest discomfort was reported in {symptom_counts.get('Chest Discomfort', 0)} records, "
"frequently leading to ECG/lab referrals. Inconsistent follow-up documentation raises "
"concerns about potential missed cardiovascular diagnoses."
)
summary = (
f"## Summary\n\n"
f"Analyzed {total_records:,} patient records from {unique_bookings:,} unique bookings in 2023. "
f"Key findings include a high prevalence of chest discomfort ({symptom_counts.get('Chest Discomfort', 0)} instances), "
f"suggesting possible underdiagnosis of cardiovascular issues.\n\n"
f"### Interesting Fact\n{interesting_fact}\n"
)
return summary, symptom_counts
def prepare_aggregate_prompt(df: pl.DataFrame) -> str:
"""Prepare a single prompt for all patient data."""
groups = df.group_by("Booking Number").agg([
pl.col("Form Name"), pl.col("Form Item"),
pl.col("Item Response"), pl.col("Interviewer"),
pl.col("Interview Date"), pl.col("Description")
])
records = []
for booking in groups.iter_rows(named=True):
booking_id = booking["Booking Number"]
for i in range(len(booking["Form Name"])):
record = (
f"- {booking['Form Name'][i]}: {booking['Form Item'][i]} = {booking['Item Response'][i]} "
f"({booking['Interview Date'][i]} by {booking['Interviewer'][i]})\n{booking['Description'][i]}"
)
records.append(clean_response(record))
record_text = "\n".join(records)
prompt = f"""
Patient Medical History Analysis
Instructions:
Analyze the following aggregated patient data from all bookings to identify potential missed diagnoses, medication conflicts, incomplete assessments, and urgent follow-up needs across the entire dataset. Provide a comprehensive summary under the specified markdown headings. Focus on patterns and recurring issues across multiple patients.
Data:
{record_text}
### Missed Diagnoses
- ...
### Medication Conflicts
- ...
### Incomplete Assessments
- ...
### Urgent Follow-up
- ...
"""
return prompt
def init_agent():
"""Initialize TxAgent with tool configuration."""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Failed to initialize TxAgent: {str(e)}")
raise
async def generate_report(agent, df: pl.DataFrame, file_hash_value: str) -> tuple[str, str]:
"""Generate a comprehensive markdown report."""
logger.info("Generating comprehensive report...")
report_path = os.path.join(report_dir, f"{file_hash_value}_report.md")
# Generate summary
summary, symptom_counts = generate_summary(df)
# Prepare and run aggregated analysis
prompt = prepare_aggregate_prompt(df)
full_output = ""
try:
chunk_output = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048,
max_token=8192,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
chunk_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
chunk_output += cleaned + "\n"
full_output = chunk_output.strip()
yield full_output, None # Stream partial results
# Filter out empty sections
sections = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
filtered_output = []
current_section = None
for line in full_output.split("\n"):
if any(line.startswith(f"### {section}") for section in sections):
current_section = line
filtered_output.append(line)
elif current_section and line.strip().startswith("-") and line.strip() != "- ...":
filtered_output.append(line)
# Compile final report
final_output = summary + "## Clinical Findings\n\n"
if filtered_output:
final_output += "\n".join(filtered_output) + "\n\n"
else:
final_output += "No significant clinical findings identified.\n\n"
final_output += (
"## Conclusion\n\n"
"The analysis reveals significant gaps in patient care, including potential missed cardiovascular diagnoses "
"due to inconsistent follow-up on chest discomfort and elevated vitals. Low medication adherence is a recurring "
"issue, likely impacting treatment efficacy. Incomplete assessments, particularly missing vital signs, hinder "
"comprehensive care. Urgent follow-up is recommended for patients with chest discomfort and elevated vitals to "
"prevent adverse outcomes."
)
# Save report
async with aiofiles.open(report_path, "w") as f:
await f.write(final_output)
logger.info(f"Report saved to {report_path}")
yield final_output, report_path
except Exception as e:
logger.error(f"Error generating report: {str(e)}")
yield f"Error: {str(e)}", None
def create_ui(agent):
"""Create Gradio interface for clinical oversight analysis."""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Clinical Oversight Assistant",
css="""
.gradio-container {max-width: 1000px; margin: auto; font-family: Arial, sans-serif;}
#chatbot {border: 1px solid #e5e7eb; border-radius: 8px; padding: 10px; background: #f9fafb;}
.markdown {white-space: pre-wrap;}
"""
) as demo:
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True,
elem_id="chatbot"
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process all patient records and generate a comprehensive report
4. **Review Results**: Analysis appears in the chat window
5. **Download Report**: Get a full markdown report of all findings
### Excel File Requirements
Your Excel file must contain these columns:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
### Analysis Includes
- Missed diagnoses
- Medication conflicts
- Incomplete assessments
- Urgent follow-up needs
""")
def format_message(role: str, content: str) -> Tuple[str, str]:
"""Format messages for the chatbot in (user, bot) format."""
if role == "user":
return (content, None)
else:
return (None, content)
async def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
"""Analyze uploaded file and generate comprehensive report."""
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history
new_history = chat_history + [format_message("user", message)]
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
yield new_history, None
# Load and clean data
df = await load_and_clean_data(file.name)
file_hash_value = file_hash(file.name)
# Generate report
async for output, report_path in generate_report(agent, df, file_hash_value):
if output:
new_history[-1] = format_message("assistant", output)
yield new_history, report_path
else:
yield new_history, report_path
except Exception as e:
logger.error(f"Analysis failed: {str(e)}")
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
"""Clear chat history and download output."""
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze",
queue=True
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
queue=True
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Failed to launch application: {str(e)}")
print(f"Failed to launch application: {str(e)}")
sys.exit(1)