|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List, Dict, Optional, Generator, Any |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
import logging |
|
import torch |
|
import gc |
|
from diskcache import Cache |
|
import time |
|
from transformers import AutoTokenizer |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
cache = Cache(file_cache_dir, size_limit=10 * 1024**3) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B") |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def extract_all_pages(file_path: str, progress_callback=None) -> str: |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
if total_pages == 0: |
|
return "" |
|
|
|
batch_size = 10 |
|
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)] |
|
text_chunks = [""] * total_pages |
|
processed_pages = 0 |
|
|
|
def extract_batch(start: int, end: int) -> List[tuple]: |
|
results = [] |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages[start:end]: |
|
page_num = start + pdf.pages.index(page) |
|
page_text = page.extract_text() or "" |
|
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}")) |
|
return results |
|
|
|
with ThreadPoolExecutor(max_workers=6) as executor: |
|
futures = [executor.submit(extract_batch, start, end) for start, end in batches] |
|
for future in as_completed(futures): |
|
for page_num, text in future.result(): |
|
text_chunks[page_num] = text |
|
processed_pages += batch_size |
|
if progress_callback: |
|
progress_callback(min(processed_pages, total_pages), total_pages) |
|
|
|
return "\n\n".join(filter(None, text_chunks)) |
|
except Exception as e: |
|
logger.error("PDF processing error: %s", e) |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def excel_to_json(file_path: str) -> List[Dict]: |
|
"""Convert Excel file to JSON with optimized processing""" |
|
try: |
|
|
|
try: |
|
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str) |
|
except Exception: |
|
|
|
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str) |
|
|
|
|
|
content = df.where(pd.notnull(df), "").astype(str).values.tolist() |
|
|
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"rows": content, |
|
"type": "excel" |
|
}] |
|
except Exception as e: |
|
logger.error(f"Error processing Excel file: {e}") |
|
return [{"error": f"Error processing Excel file: {str(e)}"}] |
|
|
|
def csv_to_json(file_path: str) -> List[Dict]: |
|
"""Convert CSV file to JSON with optimized processing""" |
|
try: |
|
|
|
chunks = [] |
|
for chunk in pd.read_csv( |
|
file_path, |
|
header=None, |
|
dtype=str, |
|
encoding_errors='replace', |
|
on_bad_lines='skip', |
|
chunksize=10000 |
|
): |
|
chunks.append(chunk) |
|
|
|
df = pd.concat(chunks) if chunks else pd.DataFrame() |
|
content = df.where(pd.notnull(df), "").astype(str).values.tolist() |
|
|
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"rows": content, |
|
"type": "csv" |
|
}] |
|
except Exception as e: |
|
logger.error(f"Error processing CSV file: {e}") |
|
return [{"error": f"Error processing CSV file: {str(e)}"}] |
|
|
|
def process_file(file_path: str, file_type: str) -> List[Dict]: |
|
"""Process file based on type and return JSON data""" |
|
try: |
|
if file_type == "pdf": |
|
text = extract_all_pages(file_path) |
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"content": text, |
|
"status": "initial", |
|
"type": "pdf" |
|
}] |
|
elif file_type in ["xls", "xlsx"]: |
|
return excel_to_json(file_path) |
|
elif file_type == "csv": |
|
return csv_to_json(file_path) |
|
else: |
|
return [{"error": f"Unsupported file type: {file_type}"}] |
|
except Exception as e: |
|
logger.error("Error processing %s: %s", os.path.basename(file_path), e) |
|
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}] |
|
|
|
def tokenize_and_chunk(text: str, max_tokens: int = 1800) -> List[str]: |
|
"""Split text into chunks based on token count""" |
|
tokens = tokenizer.encode(text) |
|
chunks = [] |
|
for i in range(0, len(tokens), max_tokens): |
|
chunk_tokens = tokens[i:i + max_tokens] |
|
chunks.append(tokenizer.decode(chunk_tokens)) |
|
return chunks |
|
|
|
def log_system_usage(tag=""): |
|
try: |
|
cpu = psutil.cpu_percent(interval=1) |
|
mem = psutil.virtual_memory() |
|
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2)) |
|
result = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], |
|
capture_output=True, text=True |
|
) |
|
if result.returncode == 0: |
|
used, total, util = result.stdout.strip().split(", ") |
|
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util) |
|
except Exception as e: |
|
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e) |
|
|
|
def clean_response(text: str) -> str: |
|
text = sanitize_utf8(text) |
|
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL) |
|
diagnoses = [] |
|
lines = text.splitlines() |
|
in_diagnoses_section = False |
|
for line in lines: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
if re.match(r"###\s*Missed Diagnoses", line): |
|
in_diagnoses_section = True |
|
continue |
|
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line): |
|
in_diagnoses_section = False |
|
continue |
|
if in_diagnoses_section and re.match(r"-\s*.+", line): |
|
diagnosis = re.sub(r"^\-\s*", "", line).strip() |
|
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE): |
|
diagnoses.append(diagnosis) |
|
text = " ".join(diagnoses) |
|
text = re.sub(r"\s+", " ", text).strip() |
|
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text) |
|
return text if text else "" |
|
|
|
def summarize_findings(combined_response: str) -> str: |
|
chunks = combined_response.split("--- Analysis for Chunk") |
|
diagnoses = [] |
|
for chunk in chunks: |
|
chunk = chunk.strip() |
|
if not chunk or "No oversights identified" in chunk: |
|
continue |
|
lines = chunk.splitlines() |
|
in_diagnoses_section = False |
|
for line in lines: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
if re.match(r"###\s*Missed Diagnoses", line): |
|
in_diagnoses_section = True |
|
continue |
|
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line): |
|
in_diagnoses_section = False |
|
continue |
|
if in_diagnoses_section and re.match(r"-\s*.+", line): |
|
diagnosis = re.sub(r"^\-\s*", "", line).strip() |
|
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE): |
|
diagnoses.append(diagnosis) |
|
|
|
seen = set() |
|
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))] |
|
|
|
if not unique_diagnoses: |
|
return "No missed diagnoses were identified in the provided records." |
|
|
|
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1]) |
|
if len(unique_diagnoses) > 1: |
|
summary += f", and {unique_diagnoses[-1]}" |
|
elif len(unique_diagnoses) == 1: |
|
summary = "Missed diagnoses include " + unique_diagnoses[0] |
|
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes." |
|
|
|
return summary.strip() |
|
|
|
def update_progress(current: int, total: int, stage: str = "") -> Dict[str, Any]: |
|
progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}" |
|
return {"value": progress, "visible": True, "label": f"Progress: {progress}"} |
|
|
|
def init_agent(): |
|
logger.info("Initializing model...") |
|
log_system_usage("Before Load") |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=False, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
log_system_usage("After Load") |
|
logger.info("Agent Ready") |
|
return agent |
|
|
|
def process_response_stream(prompt: str, history: List[dict]) -> Generator[dict, None, None]: |
|
"""Process a single prompt and stream the response""" |
|
full_response = "" |
|
for chunk_output in agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []): |
|
if chunk_output is None: |
|
continue |
|
|
|
if isinstance(chunk_output, list): |
|
for m in chunk_output: |
|
if hasattr(m, 'content') and m.content: |
|
cleaned = clean_response(m.content) |
|
if cleaned: |
|
full_response += cleaned + " " |
|
yield {"role": "assistant", "content": full_response} |
|
elif isinstance(chunk_output, str) and chunk_output.strip(): |
|
cleaned = clean_response(chunk_output) |
|
if cleaned: |
|
full_response += cleaned + " " |
|
yield {"role": "assistant", "content": full_response} |
|
|
|
return full_response |
|
|
|
def analyze(message: str, history: List[dict], files: List) -> Generator[Dict[str, Any], None, None]: |
|
|
|
outputs = { |
|
"chatbot": history.copy(), |
|
"download_output": None, |
|
"final_summary": "", |
|
"progress_text": {"value": "Starting analysis...", "visible": True} |
|
} |
|
|
|
try: |
|
|
|
history.append({"role": "user", "content": message}) |
|
outputs["chatbot"] = history |
|
yield outputs |
|
|
|
extracted = [] |
|
file_hash_value = "" |
|
|
|
if files: |
|
|
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [] |
|
for f in files: |
|
file_type = f.name.split(".")[-1].lower() |
|
futures.append(executor.submit(process_file, f.name, file_type)) |
|
|
|
for i, future in enumerate(as_completed(futures), 1): |
|
try: |
|
extracted.extend(future.result()) |
|
outputs["progress_text"] = update_progress(i, len(files), "Processing files") |
|
yield outputs |
|
except Exception as e: |
|
logger.error(f"File processing error: {e}") |
|
extracted.append({"error": f"Error processing file: {str(e)}"}) |
|
|
|
file_hash_value = file_hash(files[0].name) if files else "" |
|
history.append({"role": "assistant", "content": "✅ File processing complete"}) |
|
outputs.update({ |
|
"chatbot": history, |
|
"progress_text": update_progress(len(files), len(files), "Files processed") |
|
}) |
|
yield outputs |
|
|
|
|
|
text_content = "\n".join(json.dumps(item) for item in extracted) |
|
|
|
|
|
chunks = tokenize_and_chunk(text_content) |
|
combined_response = "" |
|
|
|
for chunk_idx, chunk in enumerate(chunks, 1): |
|
prompt = f""" |
|
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence. |
|
|
|
Patient Record Excerpt (Chunk {chunk_idx} of {len(chunks)}): |
|
{chunk[:1800]} |
|
""" |
|
|
|
|
|
history.append({"role": "assistant", "content": ""}) |
|
outputs.update({ |
|
"chatbot": history, |
|
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing") |
|
}) |
|
yield outputs |
|
|
|
|
|
chunk_response = "" |
|
for update in process_response_stream(prompt, history): |
|
history[-1] = update |
|
chunk_response = update["content"] |
|
outputs.update({ |
|
"chatbot": history, |
|
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing") |
|
}) |
|
yield outputs |
|
|
|
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n" |
|
|
|
|
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
summary = summarize_findings(combined_response) |
|
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None |
|
if report_path: |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(combined_response + "\n\n" + summary) |
|
|
|
outputs.update({ |
|
"download_output": report_path if report_path and os.path.exists(report_path) else None, |
|
"final_summary": summary, |
|
"progress_text": {"visible": False} |
|
}) |
|
yield outputs |
|
|
|
except Exception as e: |
|
logger.error("Analysis error: %s", e) |
|
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) |
|
outputs.update({ |
|
"chatbot": history, |
|
"final_summary": f"Error occurred during analysis: {str(e)}", |
|
"progress_text": {"visible": False} |
|
}) |
|
yield outputs |
|
|
|
def clear_and_start(): |
|
return [ |
|
[], |
|
None, |
|
"", |
|
"", |
|
None, |
|
{"visible": False} |
|
] |
|
|
|
def create_ui(agent): |
|
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot( |
|
label="Analysis Conversation", |
|
height=600, |
|
show_copy_button=True, |
|
avatar_images=( |
|
"assets/user.png", |
|
"assets/assistant.png" |
|
) if os.path.exists("assets/user.png") else None, |
|
render=False |
|
) |
|
with gr.Column(scale=1): |
|
final_summary = gr.Markdown( |
|
label="Summary of Findings", |
|
value="### Summary will appear here\nAfter analysis completes" |
|
) |
|
download_output = gr.File( |
|
label="Download Full Report", |
|
visible=False |
|
) |
|
|
|
with gr.Row(): |
|
file_upload = gr.File( |
|
file_types=[".pdf", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple", |
|
label="Upload Patient Records" |
|
) |
|
|
|
with gr.Row(): |
|
msg_input = gr.Textbox( |
|
placeholder="Ask about potential oversights...", |
|
show_label=False, |
|
container=False, |
|
scale=7, |
|
autofocus=True |
|
) |
|
send_btn = gr.Button( |
|
"Analyze", |
|
variant="primary", |
|
scale=1, |
|
min_width=100 |
|
) |
|
|
|
progress_text = gr.Textbox( |
|
label="Progress", |
|
visible=False, |
|
interactive=False |
|
) |
|
|
|
|
|
send_btn.click( |
|
analyze, |
|
inputs=[msg_input, chatbot, file_upload], |
|
outputs=[chatbot, download_output, final_summary, progress_text], |
|
show_progress="hidden" |
|
) |
|
|
|
msg_input.submit( |
|
analyze, |
|
inputs=[msg_input, chatbot, file_upload], |
|
outputs=[chatbot, download_output, final_summary, progress_text], |
|
show_progress="hidden" |
|
) |
|
|
|
demo.load( |
|
clear_and_start, |
|
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text], |
|
queue=False |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
logger.info("Launching app...") |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.queue( |
|
api_open=False, |
|
max_size=20 |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |
|
except Exception as e: |
|
logger.error(f"Failed to launch app: {e}") |
|
raise |
|
finally: |
|
if torch.distributed.is_initialized(): |
|
torch.distributed.destroy_process_group() |