File size: 19,917 Bytes
78b3332 55e3db0 2ce0a4e 78b3332 f18c2fd 78b3332 543491f a6968c2 78b3332 ea2488a 78b3332 ea2488a 78b3332 ea2488a 78b3332 543491f 78b3332 543491f ea2488a 58a777c 543491f 58a777c 543491f 58a777c ea2488a 58a777c 463c8b4 543491f 78b3332 543491f 78b3332 543491f 58a777c 543491f 58a777c 78b3332 58a777c 78b3332 543491f 58a777c 78b3332 58a777c 78b3332 543491f 58a777c 78b3332 58a777c 78b3332 58a777c f18c2fd 543491f 78b3332 f18c2fd 78b3332 ea2488a 78b3332 ea2488a 78b3332 ea2488a 78b3332 ea2488a 422a1e2 55e3db0 78b3332 ea2488a 78b3332 ea2488a 55e3db0 422a1e2 55e3db0 422a1e2 55e3db0 78b3332 8547f5e 78b3332 8547f5e 55e3db0 7e1cdc4 8547f5e f99effd 8547f5e 78b3332 8547f5e f99effd 8547f5e f99effd 8547f5e f99effd 8547f5e a6968c2 fe67870 e24be23 78b3332 8547f5e 78b3332 f99effd 78b3332 8547f5e 78b3332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator, Any
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
# Initialize tokenizer for precise chunking
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str, progress_callback=None) -> str:
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
batch_size = 10
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
processed_pages = 0
def extract_batch(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
page_text = page.extract_text() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
return results
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
processed_pages += batch_size
if progress_callback:
progress_callback(min(processed_pages, total_pages), total_pages)
return "\n\n".join(filter(None, text_chunks))
except Exception as e:
logger.error("PDF processing error: %s", e)
return f"PDF processing error: {str(e)}"
def excel_to_json(file_path: str) -> List[Dict]:
"""Convert Excel file to JSON with optimized processing"""
try:
# First try with openpyxl (faster for xlsx)
try:
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
except Exception:
# Fall back to xlrd if needed
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
# Convert to list of lists with null handling
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
return [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "excel"
}]
except Exception as e:
logger.error(f"Error processing Excel file: {e}")
return [{"error": f"Error processing Excel file: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
"""Convert CSV file to JSON with optimized processing"""
try:
# Read CSV in chunks if large
chunks = []
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
return [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "csv"
}]
except Exception as e:
logger.error(f"Error processing CSV file: {e}")
return [{"error": f"Error processing CSV file: {str(e)}"}]
def process_file(file_path: str, file_type: str) -> List[Dict]:
"""Process file based on type and return JSON data"""
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"type": "pdf"
}]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
def tokenize_and_chunk(text: str, max_tokens: int = 1800) -> List[str]:
"""Split text into chunks based on token count"""
tokens = tokenizer.encode(text)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk_tokens = tokens[i:i + max_tokens]
chunks.append(tokenizer.decode(chunk_tokens))
return chunks
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
except Exception as e:
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
diagnoses = []
lines = text.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
text = " ".join(diagnoses)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
return text if text else ""
def summarize_findings(combined_response: str) -> str:
chunks = combined_response.split("--- Analysis for Chunk")
diagnoses = []
for chunk in chunks:
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
lines = chunk.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
if not unique_diagnoses:
return "No missed diagnoses were identified in the provided records."
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
if len(unique_diagnoses) > 1:
summary += f", and {unique_diagnoses[-1]}"
elif len(unique_diagnoses) == 1:
summary = "Missed diagnoses include " + unique_diagnoses[0]
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
return summary.strip()
def update_progress(current: int, total: int, stage: str = "") -> Dict[str, Any]:
progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
return {"value": progress, "visible": True, "label": f"Progress: {progress}"}
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def process_response_stream(prompt: str, history: List[dict]) -> Generator[dict, None, None]:
"""Process a single prompt and stream the response"""
full_response = ""
for chunk_output in agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
full_response += cleaned + " "
yield {"role": "assistant", "content": full_response}
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned:
full_response += cleaned + " "
yield {"role": "assistant", "content": full_response}
return full_response
def analyze(message: str, history: List[dict], files: List) -> Generator[Dict[str, Any], None, None]:
# Initialize outputs
outputs = {
"chatbot": history.copy(),
"download_output": None,
"final_summary": "",
"progress_text": {"value": "Starting analysis...", "visible": True}
}
try:
# Start with user message
history.append({"role": "user", "content": message})
outputs["chatbot"] = history
yield outputs
extracted = []
file_hash_value = ""
if files:
# Process files in parallel
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(process_file, f.name, file_type))
for i, future in enumerate(as_completed(futures), 1):
try:
extracted.extend(future.result())
outputs["progress_text"] = update_progress(i, len(files), "Processing files")
yield outputs
except Exception as e:
logger.error(f"File processing error: {e}")
extracted.append({"error": f"Error processing file: {str(e)}"})
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
outputs.update({
"chatbot": history,
"progress_text": update_progress(len(files), len(files), "Files processed")
})
yield outputs
# Convert extracted data to JSON text
text_content = "\n".join(json.dumps(item) for item in extracted)
# Tokenize and chunk the content properly
chunks = tokenize_and_chunk(text_content)
combined_response = ""
for chunk_idx, chunk in enumerate(chunks, 1):
prompt = f"""
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
Patient Record Excerpt (Chunk {chunk_idx} of {len(chunks)}):
{chunk[:1800]}
"""
# Create a placeholder message
history.append({"role": "assistant", "content": ""})
outputs.update({
"chatbot": history,
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
})
yield outputs
# Process and stream the response
chunk_response = ""
for update in process_response_stream(prompt, history):
history[-1] = update
chunk_response = update["content"]
outputs.update({
"chatbot": history,
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
})
yield outputs
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
# Clean up memory
torch.cuda.empty_cache()
gc.collect()
# Generate final summary
summary = summarize_findings(combined_response)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + summary)
outputs.update({
"download_output": report_path if report_path and os.path.exists(report_path) else None,
"final_summary": summary,
"progress_text": {"visible": False}
})
yield outputs
except Exception as e:
logger.error("Analysis error: %s", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
outputs.update({
"chatbot": history,
"final_summary": f"Error occurred during analysis: {str(e)}",
"progress_text": {"visible": False}
})
yield outputs
def clear_and_start():
return [
[], # chatbot
None, # download_output
"", # final_summary
"", # msg_input
None, # file_upload
{"visible": False} # progress_text
]
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Analysis Conversation",
height=600,
show_copy_button=True,
avatar_images=(
"assets/user.png",
"assets/assistant.png"
) if os.path.exists("assets/user.png") else None,
render=False
)
with gr.Column(scale=1):
final_summary = gr.Markdown(
label="Summary of Findings",
value="### Summary will appear here\nAfter analysis completes"
)
download_output = gr.File(
label="Download Full Report",
visible=False
)
with gr.Row():
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Patient Records"
)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Ask about potential oversights...",
show_label=False,
container=False,
scale=7,
autofocus=True
)
send_btn = gr.Button(
"Analyze",
variant="primary",
scale=1,
min_width=100
)
progress_text = gr.Textbox(
label="Progress",
visible=False,
interactive=False
)
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output, final_summary, progress_text],
show_progress="hidden"
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output, final_summary, progress_text],
show_progress="hidden"
)
demo.load(
clear_and_start,
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text],
queue=False
)
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Failed to launch app: {e}")
raise
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group() |