File size: 19,917 Bytes
78b3332
 
 
 
 
 
55e3db0
2ce0a4e
78b3332
 
 
 
 
 
 
 
f18c2fd
78b3332
543491f
a6968c2
78b3332
 
 
ea2488a
78b3332
 
 
ea2488a
78b3332
 
 
 
 
ea2488a
78b3332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543491f
 
 
78b3332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543491f
 
ea2488a
58a777c
 
 
 
 
 
 
543491f
 
58a777c
 
 
543491f
 
58a777c
ea2488a
58a777c
 
463c8b4
543491f
 
78b3332
543491f
 
 
78b3332
 
 
 
543491f
 
 
 
 
 
 
58a777c
 
 
543491f
 
58a777c
78b3332
58a777c
 
78b3332
543491f
58a777c
78b3332
 
 
58a777c
78b3332
 
543491f
 
58a777c
 
 
 
 
78b3332
58a777c
78b3332
 
58a777c
f18c2fd
543491f
 
 
 
 
 
 
 
 
78b3332
 
 
 
 
 
 
 
 
 
 
 
 
 
f18c2fd
78b3332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea2488a
78b3332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea2488a
78b3332
 
 
 
 
ea2488a
78b3332
 
 
 
 
 
 
 
ea2488a
422a1e2
55e3db0
 
 
78b3332
 
 
 
 
 
 
ea2488a
78b3332
 
 
 
 
 
 
 
 
 
 
 
 
 
ea2488a
55e3db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422a1e2
55e3db0
 
 
 
 
 
 
 
 
 
422a1e2
55e3db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b3332
8547f5e
78b3332
8547f5e
 
 
 
 
 
 
 
 
 
55e3db0
7e1cdc4
8547f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99effd
 
 
 
8547f5e
78b3332
8547f5e
 
 
 
f99effd
8547f5e
 
 
 
 
 
f99effd
8547f5e
 
 
 
 
f99effd
8547f5e
 
 
a6968c2
fe67870
e24be23
78b3332
 
 
 
8547f5e
 
 
 
78b3332
 
 
 
f99effd
78b3332
8547f5e
 
 
78b3332
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator, Any
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

# Initialize tokenizer for precise chunking
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_all_pages(file_path: str, progress_callback=None) -> str:
    try:
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            if total_pages == 0:
                return ""

        batch_size = 10
        batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
        text_chunks = [""] * total_pages
        processed_pages = 0

        def extract_batch(start: int, end: int) -> List[tuple]:
            results = []
            with pdfplumber.open(file_path) as pdf:
                for page in pdf.pages[start:end]:
                    page_num = start + pdf.pages.index(page)
                    page_text = page.extract_text() or ""
                    results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
            return results

        with ThreadPoolExecutor(max_workers=6) as executor:
            futures = [executor.submit(extract_batch, start, end) for start, end in batches]
            for future in as_completed(futures):
                for page_num, text in future.result():
                    text_chunks[page_num] = text
                processed_pages += batch_size
                if progress_callback:
                    progress_callback(min(processed_pages, total_pages), total_pages)

        return "\n\n".join(filter(None, text_chunks))
    except Exception as e:
        logger.error("PDF processing error: %s", e)
        return f"PDF processing error: {str(e)}"

def excel_to_json(file_path: str) -> List[Dict]:
    """Convert Excel file to JSON with optimized processing"""
    try:
        # First try with openpyxl (faster for xlsx)
        try:
            df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
        except Exception:
            # Fall back to xlrd if needed
            df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
        
        # Convert to list of lists with null handling
        content = df.where(pd.notnull(df), "").astype(str).values.tolist()
        
        return [{
            "filename": os.path.basename(file_path),
            "rows": content,
            "type": "excel"
        }]
    except Exception as e:
        logger.error(f"Error processing Excel file: {e}")
        return [{"error": f"Error processing Excel file: {str(e)}"}]

def csv_to_json(file_path: str) -> List[Dict]:
    """Convert CSV file to JSON with optimized processing"""
    try:
        # Read CSV in chunks if large
        chunks = []
        for chunk in pd.read_csv(
            file_path,
            header=None,
            dtype=str,
            encoding_errors='replace',
            on_bad_lines='skip',
            chunksize=10000
        ):
            chunks.append(chunk)
        
        df = pd.concat(chunks) if chunks else pd.DataFrame()
        content = df.where(pd.notnull(df), "").astype(str).values.tolist()
        
        return [{
            "filename": os.path.basename(file_path),
            "rows": content,
            "type": "csv"
        }]
    except Exception as e:
        logger.error(f"Error processing CSV file: {e}")
        return [{"error": f"Error processing CSV file: {str(e)}"}]

def process_file(file_path: str, file_type: str) -> List[Dict]:
    """Process file based on type and return JSON data"""
    try:
        if file_type == "pdf":
            text = extract_all_pages(file_path)
            return [{
                "filename": os.path.basename(file_path),
                "content": text,
                "status": "initial",
                "type": "pdf"
            }]
        elif file_type in ["xls", "xlsx"]:
            return excel_to_json(file_path)
        elif file_type == "csv":
            return csv_to_json(file_path)
        else:
            return [{"error": f"Unsupported file type: {file_type}"}]
    except Exception as e:
        logger.error("Error processing %s: %s", os.path.basename(file_path), e)
        return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]

def tokenize_and_chunk(text: str, max_tokens: int = 1800) -> List[str]:
    """Split text into chunks based on token count"""
    tokens = tokenizer.encode(text)
    chunks = []
    for i in range(0, len(tokens), max_tokens):
        chunk_tokens = tokens[i:i + max_tokens]
        chunks.append(tokenizer.decode(chunk_tokens))
    return chunks

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
    except Exception as e:
        logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
    diagnoses = []
    lines = text.splitlines()
    in_diagnoses_section = False
    for line in lines:
        line = line.strip()
        if not line:
            continue
        if re.match(r"###\s*Missed Diagnoses", line):
            in_diagnoses_section = True
            continue
        if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
            in_diagnoses_section = False
            continue
        if in_diagnoses_section and re.match(r"-\s*.+", line):
            diagnosis = re.sub(r"^\-\s*", "", line).strip()
            if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
                diagnoses.append(diagnosis)
    text = " ".join(diagnoses)
    text = re.sub(r"\s+", " ", text).strip()
    text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
    return text if text else ""

def summarize_findings(combined_response: str) -> str:
    chunks = combined_response.split("--- Analysis for Chunk")
    diagnoses = []
    for chunk in chunks:
        chunk = chunk.strip()
        if not chunk or "No oversights identified" in chunk:
            continue
        lines = chunk.splitlines()
        in_diagnoses_section = False
        for line in lines:
            line = line.strip()
            if not line:
                continue
            if re.match(r"###\s*Missed Diagnoses", line):
                in_diagnoses_section = True
                continue
            if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
                in_diagnoses_section = False
                continue
            if in_diagnoses_section and re.match(r"-\s*.+", line):
                diagnosis = re.sub(r"^\-\s*", "", line).strip()
                if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
                    diagnoses.append(diagnosis)

    seen = set()
    unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
    
    if not unique_diagnoses:
        return "No missed diagnoses were identified in the provided records."

    summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
    if len(unique_diagnoses) > 1:
        summary += f", and {unique_diagnoses[-1]}"
    elif len(unique_diagnoses) == 1:
        summary = "Missed diagnoses include " + unique_diagnoses[0]
    summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
    
    return summary.strip()

def update_progress(current: int, total: int, stage: str = "") -> Dict[str, Any]:
    progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
    return {"value": progress, "visible": True, "label": f"Progress: {progress}"}

def init_agent():
    logger.info("Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    logger.info("Agent Ready")
    return agent

def process_response_stream(prompt: str, history: List[dict]) -> Generator[dict, None, None]:
    """Process a single prompt and stream the response"""
    full_response = ""
    for chunk_output in agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
        if chunk_output is None:
            continue
        
        if isinstance(chunk_output, list):
            for m in chunk_output:
                if hasattr(m, 'content') and m.content:
                    cleaned = clean_response(m.content)
                    if cleaned:
                        full_response += cleaned + " "
                        yield {"role": "assistant", "content": full_response}
        elif isinstance(chunk_output, str) and chunk_output.strip():
            cleaned = clean_response(chunk_output)
            if cleaned:
                full_response += cleaned + " "
                yield {"role": "assistant", "content": full_response}
    
    return full_response

def analyze(message: str, history: List[dict], files: List) -> Generator[Dict[str, Any], None, None]:
    # Initialize outputs
    outputs = {
        "chatbot": history.copy(),
        "download_output": None,
        "final_summary": "",
        "progress_text": {"value": "Starting analysis...", "visible": True}
    }
    
    try:
        # Start with user message
        history.append({"role": "user", "content": message})
        outputs["chatbot"] = history
        yield outputs
        
        extracted = []
        file_hash_value = ""
        
        if files:
            # Process files in parallel
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = []
                for f in files:
                    file_type = f.name.split(".")[-1].lower()
                    futures.append(executor.submit(process_file, f.name, file_type))
                
                for i, future in enumerate(as_completed(futures), 1):
                    try:
                        extracted.extend(future.result())
                        outputs["progress_text"] = update_progress(i, len(files), "Processing files")
                        yield outputs
                    except Exception as e:
                        logger.error(f"File processing error: {e}")
                        extracted.append({"error": f"Error processing file: {str(e)}"})
            
            file_hash_value = file_hash(files[0].name) if files else ""
            history.append({"role": "assistant", "content": "✅ File processing complete"})
            outputs.update({
                "chatbot": history,
                "progress_text": update_progress(len(files), len(files), "Files processed")
            })
            yield outputs

        # Convert extracted data to JSON text
        text_content = "\n".join(json.dumps(item) for item in extracted)
        
        # Tokenize and chunk the content properly
        chunks = tokenize_and_chunk(text_content)
        combined_response = ""
        
        for chunk_idx, chunk in enumerate(chunks, 1):
            prompt = f"""
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.

Patient Record Excerpt (Chunk {chunk_idx} of {len(chunks)}):
{chunk[:1800]}
"""
            
            # Create a placeholder message
            history.append({"role": "assistant", "content": ""})
            outputs.update({
                "chatbot": history,
                "progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
            })
            yield outputs
            
            # Process and stream the response
            chunk_response = ""
            for update in process_response_stream(prompt, history):
                history[-1] = update
                chunk_response = update["content"]
                outputs.update({
                    "chatbot": history,
                    "progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
                })
                yield outputs
            
            combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
            
            # Clean up memory
            torch.cuda.empty_cache()
            gc.collect()

        # Generate final summary
        summary = summarize_findings(combined_response)
        report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
        if report_path:
            with open(report_path, "w", encoding="utf-8") as f:
                f.write(combined_response + "\n\n" + summary)
        
        outputs.update({
            "download_output": report_path if report_path and os.path.exists(report_path) else None,
            "final_summary": summary,
            "progress_text": {"visible": False}
        })
        yield outputs

    except Exception as e:
        logger.error("Analysis error: %s", e)
        history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
        outputs.update({
            "chatbot": history,
            "final_summary": f"Error occurred during analysis: {str(e)}",
            "progress_text": {"visible": False}
        })
        yield outputs

def clear_and_start():
    return [
        [],  # chatbot
        None,  # download_output
        "",  # final_summary
        "",  # msg_input
        None,  # file_upload
        {"visible": False}  # progress_text
    ]

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Analysis Conversation",
                    height=600,
                    show_copy_button=True,
                    avatar_images=(
                        "assets/user.png", 
                        "assets/assistant.png"
                    ) if os.path.exists("assets/user.png") else None,
                    render=False
                )
            with gr.Column(scale=1):
                final_summary = gr.Markdown(
                    label="Summary of Findings",
                    value="### Summary will appear here\nAfter analysis completes"
                )
                download_output = gr.File(
                    label="Download Full Report",
                    visible=False
                )
        
        with gr.Row():
            file_upload = gr.File(
                file_types=[".pdf", ".csv", ".xls", ".xlsx"],
                file_count="multiple",
                label="Upload Patient Records"
            )
        
        with gr.Row():
            msg_input = gr.Textbox(
                placeholder="Ask about potential oversights...",
                show_label=False,
                container=False,
                scale=7,
                autofocus=True
            )
            send_btn = gr.Button(
                "Analyze",
                variant="primary",
                scale=1,
                min_width=100
            )
        
        progress_text = gr.Textbox(
            label="Progress",
            visible=False,
            interactive=False
        )

        # Event handlers
        send_btn.click(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output, final_summary, progress_text],
            show_progress="hidden"
        )
        
        msg_input.submit(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output, final_summary, progress_text],
            show_progress="hidden"
        )
        
        demo.load(
            clear_and_start,
            outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text],
            queue=False
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        logger.error(f"Failed to launch app: {e}")
        raise
    finally:
        if torch.distributed.is_initialized():
            torch.distributed.destroy_process_group()