Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
|
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
from typing import List
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
import hashlib
|
9 |
import shutil
|
10 |
import re
|
@@ -15,21 +16,9 @@ import torch
|
|
15 |
import gc
|
16 |
from diskcache import Cache
|
17 |
import time
|
18 |
-
import asyncio
|
19 |
-
|
20 |
-
# Try importing pypdfium2 and pytesseract, fall back to pdfplumber
|
21 |
-
try:
|
22 |
-
import pypdfium2 as pdfium
|
23 |
-
import pytesseract
|
24 |
-
from PIL import Image
|
25 |
-
HAS_PYPDFIUM2 = True
|
26 |
-
except ImportError:
|
27 |
-
HAS_PYPDFIUM2 = False
|
28 |
-
import pdfplumber
|
29 |
|
30 |
# Configure logging
|
31 |
logging.basicConfig(level=logging.INFO)
|
32 |
-
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
33 |
logger = logging.getLogger(__name__)
|
34 |
|
35 |
# Persistent directory
|
@@ -67,78 +56,37 @@ def file_hash(path: str) -> str:
|
|
67 |
with open(path, "rb") as f:
|
68 |
return hashlib.md5(f.read()).hexdigest()
|
69 |
|
70 |
-
|
71 |
try:
|
72 |
-
extracted_text = ""
|
73 |
-
total_pages = 0
|
74 |
-
text_chunks = []
|
75 |
-
|
76 |
with pdfplumber.open(file_path) as pdf:
|
77 |
total_pages = len(pdf.pages)
|
78 |
if total_pages == 0:
|
79 |
-
logger.error("No pages found in PDF")
|
80 |
return ""
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
"
|
93 |
-
"
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
logger.debug("Page %d extracted %d tables, text length: %d chars", i + 1, len(tables), len(text))
|
107 |
-
else:
|
108 |
-
text = page.extract_text() or ""
|
109 |
-
logger.debug("Page %d no tables, raw text length: %d chars", i + 1, len(text))
|
110 |
-
|
111 |
-
# Force OCR if text is short or force_ocr is True
|
112 |
-
if (not text.strip() or len(text) < 100 or force_ocr) and HAS_PYPDFIUM2 and 'pytesseract' in sys.modules:
|
113 |
-
try:
|
114 |
-
logger.info("Attempting OCR for page %d", i + 1)
|
115 |
-
pdfium_pdf = pdfium.PdfDocument(file_path)
|
116 |
-
page_bitmap = pdfium_pdf[i].render(scale=2).to_pil()
|
117 |
-
ocr_text = pytesseract.image_to_string(page_bitmap, lang="eng")
|
118 |
-
logger.debug("Page %d OCR text length: %d chars", i + 1, len(ocr_text))
|
119 |
-
text = ocr_text if ocr_text.strip() else text
|
120 |
-
pdfium_pdf.close()
|
121 |
-
except Exception as e:
|
122 |
-
logger.error("OCR failed for page %d: %s", i + 1, e)
|
123 |
-
return (i, f"=== Page {i + 1} ===\n{text.strip()}")
|
124 |
-
|
125 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
126 |
-
futures = [executor.submit(extract_page, i) for i in range(total_pages)]
|
127 |
-
for future in futures:
|
128 |
-
page_num, text = future.result()
|
129 |
-
text_chunks.append((page_num, text))
|
130 |
-
logger.debug("Page %d extracted: %s...", page_num + 1, text[:50])
|
131 |
-
if progress_callback:
|
132 |
-
progress_callback(page_num + 1, total_pages)
|
133 |
-
|
134 |
-
text_chunks.sort(key=lambda x: x[0])
|
135 |
-
extracted_text = "\n\n".join(chunk[1] for chunk in text_chunks if chunk[1].strip())
|
136 |
-
logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text))
|
137 |
-
# Force OCR retry if text is too short
|
138 |
-
if len(extracted_text) < 1000 and not force_ocr and HAS_PYPDFIUM2 and 'pytesseract' in sys.modules:
|
139 |
-
logger.info("Text too short, forcing OCR for all pages")
|
140 |
-
return await extract_all_pages_async(file_path, progress_callback, force_ocr=True)
|
141 |
-
return extracted_text
|
142 |
except Exception as e:
|
143 |
logger.error("PDF processing error: %s", e)
|
144 |
return f"PDF processing error: {str(e)}"
|
@@ -147,59 +95,28 @@ def convert_file_to_json(file_path: str, file_type: str, progress_callback=None)
|
|
147 |
try:
|
148 |
file_h = file_hash(file_path)
|
149 |
cache_key = f"{file_h}_{file_type}"
|
150 |
-
|
151 |
-
|
152 |
-
# if cache_key in cache:
|
153 |
-
# logger.info("Using cached extraction for %s", file_path)
|
154 |
-
# return cache[cache_key]
|
155 |
|
156 |
if file_type == "pdf":
|
157 |
-
text =
|
158 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
159 |
elif file_type == "csv":
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
165 |
-
logger.info("CSV processed, rows: %d", len(content))
|
166 |
-
except Exception as e:
|
167 |
-
logger.error("CSV processing failed: %s", e)
|
168 |
-
result = json.dumps({"error": f"CSV processing failed: {str(e)}"})
|
169 |
elif file_type in ["xls", "xlsx"]:
|
170 |
try:
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
df = pd.read_excel(file_path, sheet_name=sheet_name, engine="openpyxl", header=None, dtype=str)
|
177 |
-
sheet_content = df.fillna("").astype(str).values.tolist()
|
178 |
-
content.extend(sheet_content)
|
179 |
-
logger.debug("Excel sheet %s processed, rows: %d", sheet_name, len(sheet_content))
|
180 |
-
except Exception as e:
|
181 |
-
logger.warning("Excel sheet %s failed: %s", sheet_name, e)
|
182 |
-
if not content:
|
183 |
-
logger.error("No valid data extracted from Excel")
|
184 |
-
result = json.dumps({"error": "No valid data extracted from Excel"})
|
185 |
-
else:
|
186 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
187 |
-
logger.info("Excel processed, total rows: %d", len(content))
|
188 |
-
except Exception as e:
|
189 |
-
logger.error("Excel processing failed: %s", e)
|
190 |
-
try:
|
191 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
192 |
-
content = df.fillna("").astype(str).values.tolist()
|
193 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
194 |
-
logger.info("Excel processed with xlrd, rows: %d", len(content))
|
195 |
-
except Exception as e2:
|
196 |
-
logger.error("Excel processing failed with xlrd: %s", e2)
|
197 |
-
result = json.dumps({"error": f"Excel processing failed: {str(e)}"})
|
198 |
else:
|
199 |
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
200 |
|
201 |
cache[cache_key] = result
|
202 |
-
logger.info("Cached extraction for %s, size: %d bytes", file_path, len(result))
|
203 |
return result
|
204 |
except Exception as e:
|
205 |
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
@@ -222,63 +139,66 @@ def log_system_usage(tag=""):
|
|
222 |
|
223 |
def clean_response(text: str) -> str:
|
224 |
text = sanitize_utf8(text)
|
225 |
-
text =
|
226 |
-
text =
|
|
|
|
|
227 |
sections = {}
|
228 |
current_section = None
|
229 |
-
|
230 |
-
for line in
|
231 |
line = line.strip()
|
232 |
-
if not line
|
233 |
continue
|
234 |
-
seen_lines.add(line)
|
235 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
236 |
if section_match:
|
237 |
current_section = section_match.group(1)
|
238 |
-
|
|
|
239 |
continue
|
240 |
-
|
|
|
241 |
sections[current_section].append(line)
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
"
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
}
|
258 |
current_section = None
|
259 |
-
|
260 |
-
for line in combined_response.splitlines():
|
261 |
line = line.strip()
|
262 |
if not line:
|
263 |
continue
|
264 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
265 |
if section_match:
|
266 |
current_section = section_match.group(1)
|
|
|
|
|
267 |
continue
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
|
272 |
summary_lines = []
|
273 |
for heading, findings in sections.items():
|
274 |
if findings:
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
278 |
|
279 |
-
|
280 |
-
logger.debug("Summary length: %d chars", len(result))
|
281 |
-
return result
|
282 |
|
283 |
def init_agent():
|
284 |
logger.info("Initializing model...")
|
@@ -294,9 +214,7 @@ def init_agent():
|
|
294 |
tool_files_dict={"new_tool": target_tool_path},
|
295 |
force_finish=True,
|
296 |
enable_checker=False,
|
297 |
-
|
298 |
-
init_rag_num=0,
|
299 |
-
step_rag_num=0,
|
300 |
seed=100,
|
301 |
additional_default_tools=[],
|
302 |
)
|
@@ -308,8 +226,8 @@ def init_agent():
|
|
308 |
def create_ui(agent):
|
309 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
310 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
311 |
-
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages"
|
312 |
-
final_summary = gr.Markdown(label="
|
313 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
314 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
315 |
send_btn = gr.Button("Analyze", variant="primary")
|
@@ -317,14 +235,12 @@ def create_ui(agent):
|
|
317 |
progress_bar = gr.Progress()
|
318 |
|
319 |
prompt_template = """
|
320 |
-
Analyze the patient record excerpt for clinical oversights. Provide a
|
321 |
-
|
322 |
-
Patient Record Excerpt:
|
323 |
{chunk}
|
324 |
"""
|
325 |
|
326 |
-
|
327 |
-
start_time = time.time()
|
328 |
history.append({"role": "user", "content": message})
|
329 |
yield history, None, ""
|
330 |
|
@@ -335,75 +251,73 @@ Patient Record Excerpt:
|
|
335 |
progress(current / total, desc=f"Extracting text... Page {current}/{total}")
|
336 |
return history, None, ""
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
342 |
|
343 |
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
344 |
yield history, None, ""
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
logger.info("Created %d chunks", len(chunks))
|
350 |
-
for i, chunk in enumerate(chunks):
|
351 |
-
logger.debug("Chunk %d content: %s...", i + 1, chunk[:100])
|
352 |
-
all_responses = []
|
353 |
batch_size = 2
|
354 |
|
355 |
try:
|
356 |
for batch_idx in range(0, len(chunks), batch_size):
|
357 |
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
358 |
-
batch_prompts = [prompt_template.format(chunk=chunk[:
|
359 |
batch_responses = []
|
360 |
|
361 |
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
376 |
chunk_response += cleaned + "\n\n"
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
yield history, None, summary
|
394 |
|
|
|
395 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
396 |
if report_path:
|
397 |
with open(report_path, "w", encoding="utf-8") as f:
|
398 |
-
f.write(summary)
|
399 |
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
400 |
-
logger.info("Analysis took %.2f seconds", time.time() - start_time)
|
401 |
|
402 |
except Exception as e:
|
403 |
logger.error("Analysis error: %s", e)
|
404 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
405 |
-
yield history, None, f"###
|
406 |
-
logger.info("Analysis took %.2f seconds", time.time() - start_time)
|
407 |
|
408 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
409 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
+
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
from typing import List
|
8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
|
|
16 |
import gc
|
17 |
from diskcache import Cache
|
18 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(level=logging.INFO)
|
|
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
# Persistent directory
|
|
|
56 |
with open(path, "rb") as f:
|
57 |
return hashlib.md5(f.read()).hexdigest()
|
58 |
|
59 |
+
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
60 |
try:
|
|
|
|
|
|
|
|
|
61 |
with pdfplumber.open(file_path) as pdf:
|
62 |
total_pages = len(pdf.pages)
|
63 |
if total_pages == 0:
|
|
|
64 |
return ""
|
65 |
|
66 |
+
batch_size = 10
|
67 |
+
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
68 |
+
text_chunks = [""] * total_pages
|
69 |
+
processed_pages = 0
|
70 |
+
|
71 |
+
def extract_batch(start: int, end: int) -> List[tuple]:
|
72 |
+
results = []
|
73 |
+
with pdfplumber.open(file_path) as pdf:
|
74 |
+
for page in pdf.pages[start:end]:
|
75 |
+
page_num = start + pdf.pages.index(page)
|
76 |
+
page_text = page.extract_text() or ""
|
77 |
+
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
|
78 |
+
return results
|
79 |
+
|
80 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
81 |
+
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
|
82 |
+
for future in as_completed(futures):
|
83 |
+
for page_num, text in future.result():
|
84 |
+
text_chunks[page_num] = text
|
85 |
+
processed_pages += batch_size
|
86 |
+
if progress_callback:
|
87 |
+
progress_callback(min(processed_pages, total_pages), total_pages)
|
88 |
+
|
89 |
+
return "\n\n".join(filter(None, text_chunks))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
logger.error("PDF processing error: %s", e)
|
92 |
return f"PDF processing error: {str(e)}"
|
|
|
95 |
try:
|
96 |
file_h = file_hash(file_path)
|
97 |
cache_key = f"{file_h}_{file_type}"
|
98 |
+
if cache_key in cache:
|
99 |
+
return cache[cache_key]
|
|
|
|
|
|
|
100 |
|
101 |
if file_type == "pdf":
|
102 |
+
text = extract_all_pages(file_path, progress_callback)
|
103 |
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
104 |
elif file_type == "csv":
|
105 |
+
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
106 |
+
skip_blank_lines=False, on_bad_lines="skip")
|
107 |
+
content = df.fillna("").astype(str).values.tolist()
|
108 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
|
|
|
|
|
|
|
|
|
|
109 |
elif file_type in ["xls", "xlsx"]:
|
110 |
try:
|
111 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
112 |
+
except Exception:
|
113 |
+
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
114 |
+
content = df.fillna("").astype(str).values.tolist()
|
115 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
else:
|
117 |
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
118 |
|
119 |
cache[cache_key] = result
|
|
|
120 |
return result
|
121 |
except Exception as e:
|
122 |
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
|
|
139 |
|
140 |
def clean_response(text: str) -> str:
|
141 |
text = sanitize_utf8(text)
|
142 |
+
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
143 |
+
text = re.sub(r"\n{3,}", "\n\n", text)
|
144 |
+
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
|
145 |
+
|
146 |
sections = {}
|
147 |
current_section = None
|
148 |
+
lines = text.splitlines()
|
149 |
+
for line in lines:
|
150 |
line = line.strip()
|
151 |
+
if not line:
|
152 |
continue
|
|
|
153 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
154 |
if section_match:
|
155 |
current_section = section_match.group(1)
|
156 |
+
if current_section not in sections:
|
157 |
+
sections[current_section] = []
|
158 |
continue
|
159 |
+
finding_match = re.match(r"-\s*.+", line)
|
160 |
+
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
|
161 |
sections[current_section].append(line)
|
162 |
+
|
163 |
+
cleaned = []
|
164 |
+
for heading, findings in sections.items():
|
165 |
+
if findings:
|
166 |
+
cleaned.append(f"### {heading}\n" + "\n".join(findings))
|
167 |
+
|
168 |
+
text = "\n\n".join(cleaned).strip()
|
169 |
+
return text if text else ""
|
170 |
+
|
171 |
+
def summarize_findings(combined_response: str) -> str:
|
172 |
+
if not combined_response or all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
173 |
+
return "### Summary of Clinical Oversights\nNo critical oversights identified in the provided records."
|
174 |
+
|
175 |
+
sections = {}
|
176 |
+
lines = combined_response.splitlines()
|
|
|
177 |
current_section = None
|
178 |
+
for line in lines:
|
|
|
179 |
line = line.strip()
|
180 |
if not line:
|
181 |
continue
|
182 |
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
183 |
if section_match:
|
184 |
current_section = section_match.group(1)
|
185 |
+
if current_section not in sections:
|
186 |
+
sections[current_section] = []
|
187 |
continue
|
188 |
+
finding_match = re.match(r"-\s*(.+)", line)
|
189 |
+
if finding_match and current_section:
|
190 |
+
sections[current_section].append(finding_match.group(1))
|
191 |
|
192 |
summary_lines = []
|
193 |
for heading, findings in sections.items():
|
194 |
if findings:
|
195 |
+
summary = f"- **{heading}**: {'; '.join(findings[:2])}. Risks: {heading.lower()} may lead to adverse outcomes. Recommend: urgent review and specialist referral."
|
196 |
+
summary_lines.append(summary)
|
197 |
+
|
198 |
+
if not summary_lines:
|
199 |
+
return "### Summary of Clinical Oversights\nNo critical oversights identified."
|
200 |
|
201 |
+
return "### Summary of Clinical Oversights\n" + "\n".join(summary_lines)
|
|
|
|
|
202 |
|
203 |
def init_agent():
|
204 |
logger.info("Initializing model...")
|
|
|
214 |
tool_files_dict={"new_tool": target_tool_path},
|
215 |
force_finish=True,
|
216 |
enable_checker=False,
|
217 |
+
step_rag_num=4,
|
|
|
|
|
218 |
seed=100,
|
219 |
additional_default_tools=[],
|
220 |
)
|
|
|
226 |
def create_ui(agent):
|
227 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
228 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
229 |
+
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
|
230 |
+
final_summary = gr.Markdown(label="Summary of Clinical Oversights")
|
231 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
232 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
233 |
send_btn = gr.Button("Analyze", variant="primary")
|
|
|
235 |
progress_bar = gr.Progress()
|
236 |
|
237 |
prompt_template = """
|
238 |
+
Analyze the patient record excerpt for clinical oversights. Provide a concise, evidence-based summary in markdown with findings grouped under headings (e.g., 'Missed Diagnoses'). For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No issues identified".
|
239 |
+
Patient Record Excerpt (Chunk {0} of {1}):
|
|
|
240 |
{chunk}
|
241 |
"""
|
242 |
|
243 |
+
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
|
|
|
244 |
history.append({"role": "user", "content": message})
|
245 |
yield history, None, ""
|
246 |
|
|
|
251 |
progress(current / total, desc=f"Extracting text... Page {current}/{total}")
|
252 |
return history, None, ""
|
253 |
|
254 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
255 |
+
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
|
256 |
+
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
257 |
+
extracted = "\n".join(results)
|
258 |
+
file_hash_value = file_hash(files[0].name) if files else ""
|
259 |
|
260 |
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
261 |
yield history, None, ""
|
262 |
+
|
263 |
+
chunk_size = 6000
|
264 |
+
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
265 |
+
combined_response = ""
|
|
|
|
|
|
|
|
|
266 |
batch_size = 2
|
267 |
|
268 |
try:
|
269 |
for batch_idx in range(0, len(chunks), batch_size):
|
270 |
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
271 |
+
batch_prompts = [prompt_template.format(i + 1, len(chunks), chunk=chunk[:4000]) for i, chunk in enumerate(batch_chunks)]
|
272 |
batch_responses = []
|
273 |
|
274 |
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")
|
275 |
|
276 |
+
with ThreadPoolExecutor(max_workers=len(batch_chunks)) as executor:
|
277 |
+
futures = [executor.submit(agent.run_gradio_chat, prompt, [], 0.2, 512, 2048, False, []) for prompt in batch_prompts]
|
278 |
+
for future in as_completed(futures):
|
279 |
+
chunk_response = ""
|
280 |
+
for chunk_output in future.result():
|
281 |
+
if chunk_output is None:
|
282 |
+
continue
|
283 |
+
if isinstance(chunk_output, list):
|
284 |
+
for m in chunk_output:
|
285 |
+
if hasattr(m, 'content') and m.content:
|
286 |
+
cleaned = clean_response(m.content)
|
287 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
288 |
+
chunk_response += cleaned + "\n\n"
|
289 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
290 |
+
cleaned = clean_response(m.content)
|
291 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
292 |
chunk_response += cleaned + "\n\n"
|
293 |
+
batch_responses.append(chunk_response)
|
294 |
+
torch.cuda.empty_cache()
|
295 |
+
gc.collect()
|
296 |
+
|
297 |
+
for chunk_idx, chunk_response in enumerate(batch_responses, batch_idx + 1):
|
298 |
+
if chunk_response:
|
299 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
300 |
+
else:
|
301 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
302 |
+
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
303 |
+
yield history, None, ""
|
304 |
+
|
305 |
+
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
306 |
+
history[-1]["content"] = combined_response.strip()
|
307 |
+
else:
|
308 |
+
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
|
|
309 |
|
310 |
+
summary = summarize_findings(combined_response)
|
311 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
312 |
if report_path:
|
313 |
with open(report_path, "w", encoding="utf-8") as f:
|
314 |
+
f.write(combined_response + "\n\n" + summary)
|
315 |
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
|
|
316 |
|
317 |
except Exception as e:
|
318 |
logger.error("Analysis error: %s", e)
|
319 |
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
320 |
+
yield history, None, f"### Summary of Clinical Oversights\nError occurred during analysis: {str(e)}"
|
|
|
321 |
|
322 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
323 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|