CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
3deb36c verified
raw
history blame
19.1 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Any
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import traceback
from datetime import datetime
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('clinical_oversight.log')
]
)
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
"""Ensure text is UTF-8 encoded and clean."""
try:
return text.encode("utf-8", "ignore").decode("utf-8")
except Exception as e:
logger.error(f"UTF-8 sanitization failed: {str(e)}")
return ""
def file_hash(path: str) -> str:
"""Generate MD5 hash of file content."""
try:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
except Exception as e:
logger.error(f"File hash generation failed for {path}: {str(e)}")
return ""
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
"""Extract pages from PDF with priority given to pages containing medical keywords."""
try:
text_chunks = []
logger.info(f"Extracting pages from {file_path}")
with pdfplumber.open(file_path) as pdf:
# Always extract first 3 pages
for i, page in enumerate(pdf.pages[:3]):
try:
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
except Exception as page_error:
logger.warning(f"Error processing page {i+1}: {str(page_error)}")
text_chunks.append(f"=== Page {i+1} ===\n[Error extracting content]")
# Extract remaining pages that contain medical keywords
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
try:
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
except Exception as page_error:
logger.warning(f"Error processing page {i}: {str(page_error)}")
return "\n\n".join(text_chunks)
except Exception as e:
logger.error(f"PDF processing error for {file_path}: {str(e)}")
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
"""Convert different file types to JSON format with caching."""
try:
h = file_hash(file_path)
if not h:
return json.dumps({"error": "Could not generate file hash"})
cache_path = os.path.join(file_cache_dir, f"{h}.json")
# Check cache first
if os.path.exists(cache_path):
try:
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
except Exception as cache_error:
logger.error(f"Cache read error for {file_path}: {str(cache_error)}")
result = {}
try:
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = {
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"file_type": "pdf"
}
elif file_type == "csv":
df = pd.read_csv(
file_path,
encoding_errors="replace",
header=None,
dtype=str,
skip_blank_lines=False,
on_bad_lines="skip"
)
content = df.fillna("").astype(str).values.tolist()
result = {
"filename": os.path.basename(file_path),
"rows": content,
"file_type": "csv"
}
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
try:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
except Exception as excel_error:
logger.error(f"Excel read error for {file_path}: {str(excel_error)}")
raise
content = df.fillna("").astype(str).values.tolist()
result = {
"filename": os.path.basename(file_path),
"rows": content,
"file_type": "excel"
}
else:
result = {"error": f"Unsupported file type: {file_type}"}
json_result = json.dumps(result)
# Save to cache
try:
with open(cache_path, "w", encoding="utf-8") as f:
f.write(json_result)
except Exception as cache_write_error:
logger.error(f"Cache write error for {file_path}: {str(cache_write_error)}")
return json_result
except Exception as processing_error:
logger.error(f"Error processing {file_path}: {str(processing_error)}")
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(processing_error)}"})
except Exception as e:
logger.error(f"Unexpected error in convert_file_to_json: {str(e)}")
return json.dumps({"error": f"Unexpected error processing file: {str(e)}"})
def log_system_usage(tag=""):
"""Log system resource usage including CPU, RAM, and GPU."""
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
try:
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as gpu_error:
logger.warning(f"[{tag}] GPU monitor failed: {gpu_error}")
except Exception as e:
logger.error(f"System usage logging failed: {str(e)}")
def init_agent():
"""Initialize the TxAgent with proper configuration."""
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
try:
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
logger.info("Copied default tool configuration")
except Exception as e:
logger.error(f"Tool configuration copy failed: {str(e)}")
raise
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent initialization successful")
return agent
except Exception as e:
logger.error(f"Agent initialization failed: {str(e)}")
raise
def save_report(content: str, file_hash_value: str = "") -> str:
"""Save analysis report to file and return path."""
try:
if not file_hash_value:
file_hash_value = hashlib.md5(content.encode()).hexdigest()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_filename = f"report_{timestamp}_{file_hash_value[:8]}.txt"
report_path = os.path.join(report_dir, report_filename)
with open(report_path, "w", encoding="utf-8") as f:
f.write(content)
logger.info(f"Report saved to {report_path}")
return report_path
except Exception as e:
logger.error(f"Failed to save report: {str(e)}")
return ""
def clean_response(content: str) -> str:
"""Clean up model response by removing tool call artifacts."""
if not content:
return "⚠️ No content generated."
try:
# Remove tool call artifacts
cleaned = re.sub(r"\[TOOL_CALLS\].*?(?=(\[|\Z))", "", content, flags=re.DOTALL).strip()
# Remove excessive whitespace
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
return cleaned or "⚠️ Empty response after cleaning."
except Exception as e:
logger.error(f"Response cleaning failed: {str(e)}")
return content
def process_model_response(chunk: Any, history: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Process model response chunk and update chat history."""
try:
if chunk is None:
return history
if isinstance(chunk, list) and all(hasattr(m, 'role') and hasattr(m, 'content') for m in chunk):
for m in chunk:
cleaned_content = clean_response(m.content)
history.append({"role": m.role, "content": cleaned_content})
elif isinstance(chunk, str):
cleaned_chunk = clean_response(chunk)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] += cleaned_chunk
else:
history.append({"role": "assistant", "content": cleaned_chunk})
else:
logger.warning(f"Unexpected response type: {type(chunk)}")
return history
except Exception as e:
logger.error(f"Error processing model response: {str(e)}")
history.append({"role": "assistant", "content": f"⚠️ Error processing response: {str(e)}"})
return history
def analyze(message: str, history: list, files: list):
"""Main analysis function that processes files and generates responses."""
try:
# Initial response
new_history = history.copy()
new_history.append({"role": "user", "content": message})
new_history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
yield new_history, None
# Process files
extracted = ""
file_hash_value = ""
if files:
logger.info(f"Processing {len(files)} files...")
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
try:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(convert_file_to_json, f.name, file_type))
except Exception as e:
logger.error(f"Error submitting file {f.name} for processing: {str(e)}")
new_history.append({"role": "system", "content": f"⚠️ Error processing {f.name}: {str(e)}"})
results = []
for f in as_completed(futures):
try:
results.append(sanitize_utf8(f.result()))
except Exception as e:
logger.error(f"Error getting file processing result: {str(e)}")
results.append(json.dumps({"error": "File processing failed"}))
extracted = "\n".join(results)
try:
file_hash_value = file_hash(files[0].name) if files else ""
except Exception as e:
logger.error(f"Error generating file hash: {str(e)}")
file_hash_value = ""
# Prepare prompt
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{extracted[:12000]}
### Potential Oversights:
"""
logger.info(f"Prompt length: {len(prompt)} characters")
# Initialize agent response
agent = init_agent()
response_content = ""
report_path = ""
# Process agent response
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048,
max_token=4096,
call_agent=False,
conversation=[],
):
try:
new_history = process_model_response(chunk, new_history)
if isinstance(chunk, str):
response_content += clean_response(chunk)
yield new_history, None
except Exception as chunk_error:
logger.error(f"Error processing chunk: {str(chunk_error)}")
new_history.append({"role": "assistant", "content": f"⚠️ Error processing response chunk: {str(chunk_error)}"})
yield new_history, None
# Save final report
if response_content:
try:
report_path = save_report(response_content, file_hash_value)
except Exception as report_error:
logger.error(f"Error saving report: {str(report_error)}")
new_history.append({"role": "system", "content": "⚠️ Failed to save full report"})
yield new_history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
logger.error(f"Analysis error: {str(e)}\n{traceback.format_exc()}")
error_history = history.copy()
error_history.append({"role": "assistant", "content": f"❌ Critical error occurred: {str(e)}"})
yield error_history, None
def create_ui(agent):
"""Create Gradio UI interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
gr.Markdown("""
<div style='text-align: center; margin-bottom: 20px;'>
Upload medical records and ask about potential oversights or missed diagnoses.
</div>
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Conversation",
height=600,
bubble_full_width=False,
show_copy_button=True
)
msg_input = gr.Textbox(
placeholder="Ask about potential oversights...",
show_label=False,
container=False
)
with gr.Row():
send_btn = gr.Button("Analyze", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=1):
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Medical Records"
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
gr.Markdown("""
<div style='margin-top: 20px; font-size: 0.9em; color: #666;'>
<b>Note:</b> The system analyzes PDFs, CSVs, and Excel files for potential clinical oversights.
</div>
""")
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output]
)
msg_input.submit(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
lambda: ([], None),
inputs=[],
outputs=[chatbot, download_output]
)
# Add some examples
gr.Examples(
examples=[
["What potential diagnoses might have been missed in these records?"],
["Are there any medication conflicts I should be aware of?"],
["What abnormal results need follow-up in these reports?"]
],
inputs=msg_input,
label="Example Questions"
)
return demo
if __name__ == "__main__":
try:
logger.info("🚀 Launching Clinical Oversight Assistant...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
concurrency_count=2
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}\n{traceback.format_exc()}")
raise