File size: 19,063 Bytes
25e2c05 a6968c2 973658c 3deb36c a6968c2 3deb36c a6968c2 3dfd69d a6968c2 3dfd69d a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c 3dfd69d a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3deb36c 3dfd69d 3deb36c 3dfd69d 3deb36c a6968c2 3deb36c a6968c2 3deb36c a6968c2 3dfd69d 3deb36c a6968c2 3deb36c 3dfd69d 3deb36c a6968c2 fe67870 e24be23 3deb36c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Any
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import traceback
from datetime import datetime
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('clinical_oversight.log')
]
)
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
"""Ensure text is UTF-8 encoded and clean."""
try:
return text.encode("utf-8", "ignore").decode("utf-8")
except Exception as e:
logger.error(f"UTF-8 sanitization failed: {str(e)}")
return ""
def file_hash(path: str) -> str:
"""Generate MD5 hash of file content."""
try:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
except Exception as e:
logger.error(f"File hash generation failed for {path}: {str(e)}")
return ""
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
"""Extract pages from PDF with priority given to pages containing medical keywords."""
try:
text_chunks = []
logger.info(f"Extracting pages from {file_path}")
with pdfplumber.open(file_path) as pdf:
# Always extract first 3 pages
for i, page in enumerate(pdf.pages[:3]):
try:
text = page.extract_text() or ""
text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}")
except Exception as page_error:
logger.warning(f"Error processing page {i+1}: {str(page_error)}")
text_chunks.append(f"=== Page {i+1} ===\n[Error extracting content]")
# Extract remaining pages that contain medical keywords
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
try:
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
except Exception as page_error:
logger.warning(f"Error processing page {i}: {str(page_error)}")
return "\n\n".join(text_chunks)
except Exception as e:
logger.error(f"PDF processing error for {file_path}: {str(e)}")
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
"""Convert different file types to JSON format with caching."""
try:
h = file_hash(file_path)
if not h:
return json.dumps({"error": "Could not generate file hash"})
cache_path = os.path.join(file_cache_dir, f"{h}.json")
# Check cache first
if os.path.exists(cache_path):
try:
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
except Exception as cache_error:
logger.error(f"Cache read error for {file_path}: {str(cache_error)}")
result = {}
try:
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = {
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"file_type": "pdf"
}
elif file_type == "csv":
df = pd.read_csv(
file_path,
encoding_errors="replace",
header=None,
dtype=str,
skip_blank_lines=False,
on_bad_lines="skip"
)
content = df.fillna("").astype(str).values.tolist()
result = {
"filename": os.path.basename(file_path),
"rows": content,
"file_type": "csv"
}
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
try:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
except Exception as excel_error:
logger.error(f"Excel read error for {file_path}: {str(excel_error)}")
raise
content = df.fillna("").astype(str).values.tolist()
result = {
"filename": os.path.basename(file_path),
"rows": content,
"file_type": "excel"
}
else:
result = {"error": f"Unsupported file type: {file_type}"}
json_result = json.dumps(result)
# Save to cache
try:
with open(cache_path, "w", encoding="utf-8") as f:
f.write(json_result)
except Exception as cache_write_error:
logger.error(f"Cache write error for {file_path}: {str(cache_write_error)}")
return json_result
except Exception as processing_error:
logger.error(f"Error processing {file_path}: {str(processing_error)}")
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(processing_error)}"})
except Exception as e:
logger.error(f"Unexpected error in convert_file_to_json: {str(e)}")
return json.dumps({"error": f"Unexpected error processing file: {str(e)}"})
def log_system_usage(tag=""):
"""Log system resource usage including CPU, RAM, and GPU."""
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
try:
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as gpu_error:
logger.warning(f"[{tag}] GPU monitor failed: {gpu_error}")
except Exception as e:
logger.error(f"System usage logging failed: {str(e)}")
def init_agent():
"""Initialize the TxAgent with proper configuration."""
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
try:
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
logger.info("Copied default tool configuration")
except Exception as e:
logger.error(f"Tool configuration copy failed: {str(e)}")
raise
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent initialization successful")
return agent
except Exception as e:
logger.error(f"Agent initialization failed: {str(e)}")
raise
def save_report(content: str, file_hash_value: str = "") -> str:
"""Save analysis report to file and return path."""
try:
if not file_hash_value:
file_hash_value = hashlib.md5(content.encode()).hexdigest()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_filename = f"report_{timestamp}_{file_hash_value[:8]}.txt"
report_path = os.path.join(report_dir, report_filename)
with open(report_path, "w", encoding="utf-8") as f:
f.write(content)
logger.info(f"Report saved to {report_path}")
return report_path
except Exception as e:
logger.error(f"Failed to save report: {str(e)}")
return ""
def clean_response(content: str) -> str:
"""Clean up model response by removing tool call artifacts."""
if not content:
return "⚠️ No content generated."
try:
# Remove tool call artifacts
cleaned = re.sub(r"\[TOOL_CALLS\].*?(?=(\[|\Z))", "", content, flags=re.DOTALL).strip()
# Remove excessive whitespace
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
return cleaned or "⚠️ Empty response after cleaning."
except Exception as e:
logger.error(f"Response cleaning failed: {str(e)}")
return content
def process_model_response(chunk: Any, history: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Process model response chunk and update chat history."""
try:
if chunk is None:
return history
if isinstance(chunk, list) and all(hasattr(m, 'role') and hasattr(m, 'content') for m in chunk):
for m in chunk:
cleaned_content = clean_response(m.content)
history.append({"role": m.role, "content": cleaned_content})
elif isinstance(chunk, str):
cleaned_chunk = clean_response(chunk)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] += cleaned_chunk
else:
history.append({"role": "assistant", "content": cleaned_chunk})
else:
logger.warning(f"Unexpected response type: {type(chunk)}")
return history
except Exception as e:
logger.error(f"Error processing model response: {str(e)}")
history.append({"role": "assistant", "content": f"⚠️ Error processing response: {str(e)}"})
return history
def analyze(message: str, history: list, files: list):
"""Main analysis function that processes files and generates responses."""
try:
# Initial response
new_history = history.copy()
new_history.append({"role": "user", "content": message})
new_history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
yield new_history, None
# Process files
extracted = ""
file_hash_value = ""
if files:
logger.info(f"Processing {len(files)} files...")
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
try:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(convert_file_to_json, f.name, file_type))
except Exception as e:
logger.error(f"Error submitting file {f.name} for processing: {str(e)}")
new_history.append({"role": "system", "content": f"⚠️ Error processing {f.name}: {str(e)}"})
results = []
for f in as_completed(futures):
try:
results.append(sanitize_utf8(f.result()))
except Exception as e:
logger.error(f"Error getting file processing result: {str(e)}")
results.append(json.dumps({"error": "File processing failed"}))
extracted = "\n".join(results)
try:
file_hash_value = file_hash(files[0].name) if files else ""
except Exception as e:
logger.error(f"Error generating file hash: {str(e)}")
file_hash_value = ""
# Prepare prompt
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{extracted[:12000]}
### Potential Oversights:
"""
logger.info(f"Prompt length: {len(prompt)} characters")
# Initialize agent response
agent = init_agent()
response_content = ""
report_path = ""
# Process agent response
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048,
max_token=4096,
call_agent=False,
conversation=[],
):
try:
new_history = process_model_response(chunk, new_history)
if isinstance(chunk, str):
response_content += clean_response(chunk)
yield new_history, None
except Exception as chunk_error:
logger.error(f"Error processing chunk: {str(chunk_error)}")
new_history.append({"role": "assistant", "content": f"⚠️ Error processing response chunk: {str(chunk_error)}"})
yield new_history, None
# Save final report
if response_content:
try:
report_path = save_report(response_content, file_hash_value)
except Exception as report_error:
logger.error(f"Error saving report: {str(report_error)}")
new_history.append({"role": "system", "content": "⚠️ Failed to save full report"})
yield new_history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
logger.error(f"Analysis error: {str(e)}\n{traceback.format_exc()}")
error_history = history.copy()
error_history.append({"role": "assistant", "content": f"❌ Critical error occurred: {str(e)}"})
yield error_history, None
def create_ui(agent):
"""Create Gradio UI interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
gr.Markdown("""
<div style='text-align: center; margin-bottom: 20px;'>
Upload medical records and ask about potential oversights or missed diagnoses.
</div>
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Conversation",
height=600,
bubble_full_width=False,
show_copy_button=True
)
msg_input = gr.Textbox(
placeholder="Ask about potential oversights...",
show_label=False,
container=False
)
with gr.Row():
send_btn = gr.Button("Analyze", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=1):
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Medical Records"
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
gr.Markdown("""
<div style='margin-top: 20px; font-size: 0.9em; color: #666;'>
<b>Note:</b> The system analyzes PDFs, CSVs, and Excel files for potential clinical oversights.
</div>
""")
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output]
)
msg_input.submit(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
lambda: ([], None),
inputs=[],
outputs=[chatbot, download_output]
)
# Add some examples
gr.Examples(
examples=[
["What potential diagnoses might have been missed in these records?"],
["Are there any medication conflicts I should be aware of?"],
["What abnormal results need follow-up in these reports?"]
],
inputs=msg_input,
label="Example Questions"
)
return demo
if __name__ == "__main__":
try:
logger.info("🚀 Launching Clinical Oversight Assistant...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
concurrency_count=2
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}\n{traceback.format_exc()}")
raise |