|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import gradio as gr |
|
from tabulate import tabulate |
|
|
|
|
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src"))) |
|
from txagent.txagent import TxAgent |
|
|
|
def extract_all_text_from_csv_or_excel(file_path, progress=None, index=0, total=1): |
|
try: |
|
if file_path.endswith(".csv"): |
|
df = pd.read_csv(file_path, low_memory=False) |
|
elif file_path.endswith((".xls", ".xlsx")): |
|
df = pd.read_excel(file_path) |
|
else: |
|
return f"Unsupported spreadsheet format: {file_path}" |
|
|
|
if progress: |
|
progress((index + 1) / total, desc=f"Processed table: {os.path.basename(file_path)}") |
|
|
|
if "Booking Number" in df.columns: |
|
groups = df.groupby("Booking Number") |
|
elif "Form Name" in df.columns: |
|
groups = df.groupby("Form Name") |
|
else: |
|
return tabulate(df, headers="keys", tablefmt="github", showindex=False).encode("utf-8", errors="replace").decode("utf-8") |
|
|
|
result = [] |
|
for group_name, group_df in groups: |
|
result.append(f"\n### Group: {group_name}\n") |
|
formatted = tabulate(group_df, headers="keys", tablefmt="github", showindex=False) |
|
result.append(formatted.encode("utf-8", errors="replace").decode("utf-8")) |
|
|
|
return "\n".join(result) |
|
|
|
except Exception as e: |
|
return f"Error parsing file: {e}" |
|
|
|
def extract_all_text_from_pdf(file_path, progress=None, index=0, total=1): |
|
extracted = [] |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
num_pages = len(pdf.pages) |
|
for i, page in enumerate(pdf.pages): |
|
tables = page.extract_tables() |
|
for table in tables: |
|
for row in table: |
|
if any(row): |
|
extracted.append("\t".join([cell or "" for cell in row])) |
|
if progress: |
|
progress((index + i / num_pages) / total, desc=f"Parsing PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})") |
|
return "\n".join(extracted).encode("utf-8", errors="replace").decode("utf-8") |
|
except Exception as e: |
|
return f"Error parsing PDF: {e}" |
|
|
|
def create_ui(agent: TxAgent): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>") |
|
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages") |
|
|
|
file_upload = gr.File( |
|
label="Upload Medical File", |
|
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple" |
|
) |
|
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False) |
|
send_button = gr.Button("Send", variant="primary") |
|
conversation_state = gr.State([]) |
|
|
|
def handle_chat(message, history, conversation, uploaded_files, progress=gr.Progress()): |
|
context = ( |
|
"You are an expert clinical AI assistant reviewing medical form or interview data. " |
|
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. " |
|
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. " |
|
"Ensure the output is informative and helpful for improving patient care. " |
|
"Do not hallucinate. Base the response only on the provided form content. " |
|
"End with a section labeled '🧠 Final Analysis' where you summarize key findings the doctor may have missed." |
|
) |
|
|
|
if uploaded_files: |
|
extracted_text = "" |
|
total_files = len(uploaded_files) |
|
|
|
for index, file in enumerate(uploaded_files): |
|
path = file.name |
|
if path.endswith((".csv", ".xls", ".xlsx")): |
|
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n" |
|
elif path.endswith(".pdf"): |
|
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n" |
|
else: |
|
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n" |
|
if progress: |
|
progress((index + 1) / total_files, desc=f"Skipping unsupported file: {os.path.basename(path)}") |
|
|
|
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nBegin your reasoning." |
|
|
|
generator = agent.run_gradio_chat( |
|
message=message, |
|
history=history, |
|
temperature=0.3, |
|
max_new_tokens=1024, |
|
max_token=8192, |
|
call_agent=False, |
|
conversation=conversation, |
|
uploaded_files=uploaded_files, |
|
max_round=30 |
|
) |
|
for update in generator: |
|
yield update |
|
|
|
inputs = [message_input, chatbot, conversation_state, file_upload] |
|
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) |
|
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) |
|
|
|
gr.Examples([ |
|
["Upload your medical form and ask what the doctor might’ve missed."], |
|
["This patient was treated with antibiotics for UTI. What else should we check?"], |
|
["Is there anything abnormal in the attached blood work report?"] |
|
], inputs=message_input) |
|
|
|
return demo |