CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
1de8c2b verified
raw
history blame
13.8 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768 # TxAgent's maximum token limit
CHUNK_SIZE = 3000 # Target chunk size to stay under token limit
MAX_NEW_TOKENS = 1024
def file_hash(path: str) -> str:
"""Generate MD5 hash of file contents"""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean and normalize text output"""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""Approximate token count (1 token ~ 4 characters)"""
return len(text) // 4
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
"""Process raw patient data into structured format"""
data = {
'bookings': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'doctors': set(),
'timeline': []
}
# Sort by date and group by booking
df = df.sort_values('Interview Date')
for booking, group in df.groupby('Booking Number'):
for _, row in group.iterrows():
entry = {
'booking': booking,
'date': str(row['Interview Date']),
'doctor': str(row['Interviewer']),
'form': str(row['Form Name']),
'item': str(row['Form Item']),
'response': str(row['Item Response']),
'notes': str(row['Description'])
}
data['bookings'][booking].append(entry)
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
# Categorize entries
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower:
data['tests'][entry['item']].append(entry)
return data
def generate_analysis_prompt(patient_data: Dict[str, Any], booking: str) -> str:
"""Generate focused analysis prompt for a booking"""
booking_entries = patient_data['bookings'][booking]
# Build timeline string
timeline = "\n".join(
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
for entry in booking_entries
)
# Get current medications
current_meds = []
for med, entries in patient_data['medications'].items():
if any(e['booking'] == booking for e in entries):
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
current_meds.append(f"- {med}: {latest['response']} (as of {latest['date']})")
# Get current diagnoses
current_diags = []
for diag, entries in patient_data['diagnoses'].items():
if any(e['booking'] == booking for e in entries):
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
current_diags.append(f"- {diag}: {latest['response']} (as of {latest['date']})")
prompt = f"""
**Comprehensive Patient Analysis - Booking {booking}**
**Patient Timeline:**
{timeline}
**Current Medications:**
{'\n'.join(current_meds) if current_meds else "None recorded"}
**Current Diagnoses:**
{'\n'.join(current_diags) if current_diags else "None recorded"}
**Analysis Instructions:**
1. Review the patient's complete history across all visits
2. Identify any potential missed diagnoses based on symptoms and test results
3. Check for medication conflicts or inappropriate prescriptions
4. Note any incomplete assessments or missing tests
5. Flag any urgent follow-up needs
6. Compare findings across different doctors for consistency
**Required Output Format:**
### Missed Diagnoses
[Potential diagnoses that were not identified]
### Medication Issues
[Conflicts, side effects, inappropriate prescriptions]
### Assessment Gaps
[Missing tests or incomplete evaluations]
### Follow-up Recommendations
[Urgent and non-urgent follow-up needs]
### Doctor Consistency
[Discrepancies between different providers]
"""
return prompt
def chunk_patient_data(patient_data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Split patient data into manageable chunks"""
chunks = []
current_chunk = defaultdict(list)
current_size = 0
for booking, entries in patient_data['bookings'].items():
booking_size = sum(estimate_tokens(str(e)) for e in entries)
if current_size + booking_size > CHUNK_SIZE and current_chunk:
chunks.append(dict(current_chunk))
current_chunk = defaultdict(list)
current_size = 0
current_chunk['bookings'][booking] = entries
current_size += booking_size
# Add related data
for med, med_entries in patient_data['medications'].items():
if any(e['booking'] == booking for e in med_entries):
current_chunk['medications'][med].extend(
e for e in med_entries if e['booking'] == booking
)
for diag, diag_entries in patient_data['diagnoses'].items():
if any(e['booking'] == booking for e in diag_entries):
current_chunk['diagnoses'][diag].extend(
e for e in diag_entries if e['booking'] == booking
)
if current_chunk:
chunks.append(dict(current_chunk))
return chunks
def init_agent():
"""Initialize TxAgent with proper configuration"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def analyze_with_agent(agent, prompt: str) -> str:
"""Run analysis with proper error handling"""
try:
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += clean_response(r.content) + "\n"
elif isinstance(result, str):
response += clean_response(result) + "\n"
elif hasattr(result, 'content'):
response += clean_response(result.content) + "\n"
return response.strip()
except Exception as e:
return f"Error in analysis: {str(e)}"
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Patient Excel File",
file_types=[".xlsx"],
file_count="single"
)
analysis_btn = gr.Button("Analyze Patient History", variant="primary")
status = gr.Markdown("Ready for analysis")
with gr.Column(scale=2):
output_display = gr.Markdown(
label="Analysis Results",
elem_id="results"
)
report_download = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Patient history Excel file
2. **Click Analyze**: System will process all bookings
3. **Review Results**: Comprehensive analysis appears
4. **Download Report**: Full report with all findings
### Excel Requirements
Must contain these columns:
- Booking Number
- Interview Date
- Interviewer (Doctor)
- Form Name
- Form Item
- Item Response
- Description
### Analysis Includes:
- Missed diagnoses across visits
- Medication conflicts over time
- Incomplete assessments
- Doctor consistency checks
- Follow-up recommendations
""")
def analyze_patient(file) -> Tuple[str, str]:
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Process Excel file
df = pd.read_excel(file.name)
patient_data = process_patient_data(df)
# Generate and process prompts
full_report = []
bookings_processed = 0
for booking in patient_data['bookings']:
prompt = generate_analysis_prompt(patient_data, booking)
response = analyze_with_agent(agent, prompt)
if "Error in analysis" not in response:
bookings_processed += 1
full_report.append(f"## Booking {booking}\n{response}\n")
yield "\n".join(full_report), None
time.sleep(0.1) # Prevent UI freezing
# Generate overall summary
if bookings_processed > 1:
summary_prompt = """
**Comprehensive Patient Summary**
Analyze all bookings ({bookings_processed} total) to identify:
1. Patterns across the entire treatment history
2. Chronic issues that may have been missed
3. Medication changes over time
4. Doctor consistency across visits
5. Long-term recommendations
**Required Format:**
### Chronic Health Patterns
[Recurring issues over time]
### Treatment Evolution
[How treatment has changed]
### Long-term Concerns
[Issues needing ongoing attention]
### Comprehensive Recommendations
[Overall care plan]
""".format(bookings_processed=bookings_processed)
summary = analyze_with_agent(agent, summary_prompt)
full_report.append(f"## Overall Patient Summary\n{summary}\n")
# Save report
report_path = os.path.join(report_dir, f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write("\n".join(full_report))
yield "\n".join(full_report), report_path
except Exception as e:
raise gr.Error(f"Analysis failed: {str(e)}")
analysis_btn.click(
analyze_patient,
inputs=file_upload,
outputs=[output_display, report_download],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1)