|
import sys |
|
import os |
|
import pandas as pd |
|
import json |
|
import gradio as gr |
|
from typing import List, Tuple, Dict, Any |
|
import hashlib |
|
import shutil |
|
import re |
|
from datetime import datetime |
|
import time |
|
from collections import defaultdict |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MAX_TOKENS = 32768 |
|
CHUNK_SIZE = 3000 |
|
MAX_NEW_TOKENS = 1024 |
|
|
|
def file_hash(path: str) -> str: |
|
"""Generate MD5 hash of file contents""" |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def clean_response(text: str) -> str: |
|
"""Clean and normalize text output""" |
|
try: |
|
text = text.encode('utf-8', 'surrogatepass').decode('utf-8') |
|
except UnicodeError: |
|
text = text.encode('utf-8', 'replace').decode('utf-8') |
|
|
|
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) |
|
return text.strip() |
|
|
|
def estimate_tokens(text: str) -> int: |
|
"""Approximate token count (1 token ~ 4 characters)""" |
|
return len(text) // 4 |
|
|
|
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]: |
|
"""Process raw patient data into structured format""" |
|
data = { |
|
'bookings': defaultdict(list), |
|
'medications': defaultdict(list), |
|
'diagnoses': defaultdict(list), |
|
'tests': defaultdict(list), |
|
'doctors': set(), |
|
'timeline': [] |
|
} |
|
|
|
|
|
df = df.sort_values('Interview Date') |
|
for booking, group in df.groupby('Booking Number'): |
|
for _, row in group.iterrows(): |
|
entry = { |
|
'booking': booking, |
|
'date': str(row['Interview Date']), |
|
'doctor': str(row['Interviewer']), |
|
'form': str(row['Form Name']), |
|
'item': str(row['Form Item']), |
|
'response': str(row['Item Response']), |
|
'notes': str(row['Description']) |
|
} |
|
|
|
data['bookings'][booking].append(entry) |
|
data['timeline'].append(entry) |
|
data['doctors'].add(entry['doctor']) |
|
|
|
|
|
form_lower = entry['form'].lower() |
|
if 'medication' in form_lower or 'drug' in form_lower: |
|
data['medications'][entry['item']].append(entry) |
|
elif 'diagnosis' in form_lower: |
|
data['diagnoses'][entry['item']].append(entry) |
|
elif 'test' in form_lower or 'lab' in form_lower: |
|
data['tests'][entry['item']].append(entry) |
|
|
|
return data |
|
|
|
def generate_analysis_prompt(patient_data: Dict[str, Any], booking: str) -> str: |
|
"""Generate focused analysis prompt for a booking""" |
|
booking_entries = patient_data['bookings'][booking] |
|
|
|
|
|
timeline = "\n".join( |
|
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})" |
|
for entry in booking_entries |
|
) |
|
|
|
|
|
current_meds = [] |
|
for med, entries in patient_data['medications'].items(): |
|
if any(e['booking'] == booking for e in entries): |
|
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date']) |
|
current_meds.append(f"- {med}: {latest['response']} (as of {latest['date']})") |
|
|
|
|
|
current_diags = [] |
|
for diag, entries in patient_data['diagnoses'].items(): |
|
if any(e['booking'] == booking for e in entries): |
|
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date']) |
|
current_diags.append(f"- {diag}: {latest['response']} (as of {latest['date']})") |
|
|
|
prompt = f""" |
|
**Comprehensive Patient Analysis - Booking {booking}** |
|
|
|
**Patient Timeline:** |
|
{timeline} |
|
|
|
**Current Medications:** |
|
{'\n'.join(current_meds) if current_meds else "None recorded"} |
|
|
|
**Current Diagnoses:** |
|
{'\n'.join(current_diags) if current_diags else "None recorded"} |
|
|
|
**Analysis Instructions:** |
|
1. Review the patient's complete history across all visits |
|
2. Identify any potential missed diagnoses based on symptoms and test results |
|
3. Check for medication conflicts or inappropriate prescriptions |
|
4. Note any incomplete assessments or missing tests |
|
5. Flag any urgent follow-up needs |
|
6. Compare findings across different doctors for consistency |
|
|
|
**Required Output Format:** |
|
### Missed Diagnoses |
|
[Potential diagnoses that were not identified] |
|
|
|
### Medication Issues |
|
[Conflicts, side effects, inappropriate prescriptions] |
|
|
|
### Assessment Gaps |
|
[Missing tests or incomplete evaluations] |
|
|
|
### Follow-up Recommendations |
|
[Urgent and non-urgent follow-up needs] |
|
|
|
### Doctor Consistency |
|
[Discrepancies between different providers] |
|
""" |
|
return prompt |
|
|
|
def chunk_patient_data(patient_data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
"""Split patient data into manageable chunks""" |
|
chunks = [] |
|
current_chunk = defaultdict(list) |
|
current_size = 0 |
|
|
|
for booking, entries in patient_data['bookings'].items(): |
|
booking_size = sum(estimate_tokens(str(e)) for e in entries) |
|
|
|
if current_size + booking_size > CHUNK_SIZE and current_chunk: |
|
chunks.append(dict(current_chunk)) |
|
current_chunk = defaultdict(list) |
|
current_size = 0 |
|
|
|
current_chunk['bookings'][booking] = entries |
|
current_size += booking_size |
|
|
|
|
|
for med, med_entries in patient_data['medications'].items(): |
|
if any(e['booking'] == booking for e in med_entries): |
|
current_chunk['medications'][med].extend( |
|
e for e in med_entries if e['booking'] == booking |
|
) |
|
|
|
for diag, diag_entries in patient_data['diagnoses'].items(): |
|
if any(e['booking'] == booking for e in diag_entries): |
|
current_chunk['diagnoses'][diag].extend( |
|
e for e in diag_entries if e['booking'] == booking |
|
) |
|
|
|
if current_chunk: |
|
chunks.append(dict(current_chunk)) |
|
|
|
return chunks |
|
|
|
def init_agent(): |
|
"""Initialize TxAgent with proper configuration""" |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
|
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
def analyze_with_agent(agent, prompt: str) -> str: |
|
"""Run analysis with proper error handling""" |
|
try: |
|
response = "" |
|
for result in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, 'content') and r.content: |
|
response += clean_response(r.content) + "\n" |
|
elif isinstance(result, str): |
|
response += clean_response(result) + "\n" |
|
elif hasattr(result, 'content'): |
|
response += clean_response(result.content) + "\n" |
|
|
|
return response.strip() |
|
except Exception as e: |
|
return f"Error in analysis: {str(e)}" |
|
|
|
def create_ui(agent): |
|
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo: |
|
gr.Markdown("# 🏥 Comprehensive Patient History Analysis") |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Analysis"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
file_upload = gr.File( |
|
label="Upload Patient Excel File", |
|
file_types=[".xlsx"], |
|
file_count="single" |
|
) |
|
analysis_btn = gr.Button("Analyze Patient History", variant="primary") |
|
status = gr.Markdown("Ready for analysis") |
|
|
|
with gr.Column(scale=2): |
|
output_display = gr.Markdown( |
|
label="Analysis Results", |
|
elem_id="results" |
|
) |
|
report_download = gr.File( |
|
label="Download Full Report", |
|
interactive=False |
|
) |
|
|
|
with gr.TabItem("Instructions"): |
|
gr.Markdown(""" |
|
## How to Use This Tool |
|
|
|
1. **Upload Excel File**: Patient history Excel file |
|
2. **Click Analyze**: System will process all bookings |
|
3. **Review Results**: Comprehensive analysis appears |
|
4. **Download Report**: Full report with all findings |
|
|
|
### Excel Requirements |
|
Must contain these columns: |
|
- Booking Number |
|
- Interview Date |
|
- Interviewer (Doctor) |
|
- Form Name |
|
- Form Item |
|
- Item Response |
|
- Description |
|
|
|
### Analysis Includes: |
|
- Missed diagnoses across visits |
|
- Medication conflicts over time |
|
- Incomplete assessments |
|
- Doctor consistency checks |
|
- Follow-up recommendations |
|
""") |
|
|
|
def analyze_patient(file) -> Tuple[str, str]: |
|
if not file: |
|
raise gr.Error("Please upload an Excel file first") |
|
|
|
try: |
|
|
|
df = pd.read_excel(file.name) |
|
patient_data = process_patient_data(df) |
|
|
|
|
|
full_report = [] |
|
bookings_processed = 0 |
|
|
|
for booking in patient_data['bookings']: |
|
prompt = generate_analysis_prompt(patient_data, booking) |
|
response = analyze_with_agent(agent, prompt) |
|
|
|
if "Error in analysis" not in response: |
|
bookings_processed += 1 |
|
full_report.append(f"## Booking {booking}\n{response}\n") |
|
|
|
yield "\n".join(full_report), None |
|
time.sleep(0.1) |
|
|
|
|
|
if bookings_processed > 1: |
|
summary_prompt = """ |
|
**Comprehensive Patient Summary** |
|
|
|
Analyze all bookings ({bookings_processed} total) to identify: |
|
1. Patterns across the entire treatment history |
|
2. Chronic issues that may have been missed |
|
3. Medication changes over time |
|
4. Doctor consistency across visits |
|
5. Long-term recommendations |
|
|
|
**Required Format:** |
|
### Chronic Health Patterns |
|
[Recurring issues over time] |
|
|
|
### Treatment Evolution |
|
[How treatment has changed] |
|
|
|
### Long-term Concerns |
|
[Issues needing ongoing attention] |
|
|
|
### Comprehensive Recommendations |
|
[Overall care plan] |
|
""".format(bookings_processed=bookings_processed) |
|
summary = analyze_with_agent(agent, summary_prompt) |
|
full_report.append(f"## Overall Patient Summary\n{summary}\n") |
|
|
|
|
|
report_path = os.path.join(report_dir, f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") |
|
with open(report_path, 'w', encoding='utf-8') as f: |
|
f.write("\n".join(full_report)) |
|
|
|
yield "\n".join(full_report), report_path |
|
|
|
except Exception as e: |
|
raise gr.Error(f"Analysis failed: {str(e)}") |
|
|
|
analysis_btn.click( |
|
analyze_patient, |
|
inputs=file_upload, |
|
outputs=[output_display, report_download], |
|
api_name="analyze" |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
|
|
demo.queue( |
|
api_open=False, |
|
max_size=20 |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |
|
except Exception as e: |
|
print(f"Failed to launch application: {str(e)}") |
|
sys.exit(1) |