CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
1ba0100 verified
raw
history blame
9.27 kB
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_chars: int = 6000) -> str:
try:
text_chunks = []
total_chars = 0
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages):
page_text = page.extract_text() or ""
if i < 3 or any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
page_chunk = f"=== Page {i+1} ===\n{page_text.strip()}\n"
if total_chars + len(page_chunk) <= max_chars:
text_chunks.append(page_chunk)
total_chars += len(page_chunk)
else:
remaining = max_chars - total_chars
text_chunks.append(page_chunk[:remaining])
break
return "".join(text_chunks).strip()
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
text = re.sub(r"\['get_[^\]]+\']\n?", "", text)
text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
text = re.sub(r"(?i)(to analyze|based on|will start|no (drug|clinical|information)).*?\n", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text).strip()
if not re.search(r"(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", text, re.IGNORECASE):
return ""
return text
def init_agent():
print("πŸ” Initializing model...")
log_system_usage("Before Load")
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
force_finish=True,
enable_checker=True,
step_rag_num=1,
seed=100,
)
agent.init_model()
log_system_usage("After Load")
print("βœ… Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
yield history, None
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
prompt = f"""
Analyze the medical records and list potential doctor oversights under these headings only, with brief details:
**Missed Diagnoses**: Inconsistencies or unaddressed conditions.
**Medication Conflicts**: Contraindications or risky prescriptions.
**Incomplete Assessments**: Missing or shallow evaluations.
**Urgent Follow-up**: Issues needing immediate attention.
Records:
{extracted[:6000]}
Respond concisely.
"""
try:
history.append({"role": "assistant", "content": "πŸ”„ Analyzing..."})
yield history, None
response = ""
for output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.1,
max_new_tokens=512,
max_token=4096,
call_agent=False,
conversation=[],
):
if output is None:
continue
if isinstance(output, list):
for m in output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
response += cleaned + "\n"
history[-1]["content"] = response.strip()
yield history, None
elif isinstance(output, str) and output.strip():
cleaned = clean_response(output)
if cleaned:
response += cleaned + "\n"
history[-1]["content"] = response.strip()
yield history, None
if not response:
history[-1]["content"] = "No oversights identified."
yield history, None
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path and response:
with open(report_path, "w", encoding="utf-8") as f:
f.write(response.strip())
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("🚨 ERROR:", e)
history[-1]["content"] = f"❌ Error: {str(e)}"
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("πŸš€ Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)