|
import sys |
|
import os |
|
import pandas as pd |
|
import json |
|
import gradio as gr |
|
from typing import List, Tuple, Dict, Any |
|
import hashlib |
|
import shutil |
|
import re |
|
from datetime import datetime |
|
import time |
|
from collections import defaultdict |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MAX_TOKENS = 32768 |
|
CHUNK_SIZE = 10000 |
|
MAX_NEW_TOKENS = 2048 |
|
MAX_BOOKINGS_PER_CHUNK = 5 |
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def clean_response(text: str) -> str: |
|
try: |
|
text = text.encode('utf-8', 'surrogatepass').decode('utf-8') |
|
except UnicodeError: |
|
text = text.encode('utf-8', 'replace').decode('utf-8') |
|
|
|
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) |
|
return text.strip() |
|
|
|
def estimate_tokens(text: str) -> int: |
|
return len(text) // 3.5 |
|
|
|
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]: |
|
data = { |
|
'bookings': defaultdict(list), |
|
'medications': defaultdict(list), |
|
'diagnoses': defaultdict(list), |
|
'tests': defaultdict(list), |
|
'procedures': defaultdict(list), |
|
'doctors': set(), |
|
'timeline': [] |
|
} |
|
|
|
df = df.sort_values('Interview Date') |
|
for booking, group in df.groupby('Booking Number'): |
|
for _, row in group.iterrows(): |
|
entry = { |
|
'booking': booking, |
|
'date': str(row['Interview Date']), |
|
'doctor': str(row['Interviewer']), |
|
'form': str(row['Form Name']), |
|
'item': str(row['Form Item']), |
|
'response': str(row['Item Response']), |
|
'notes': str(row['Description']) |
|
} |
|
|
|
data['bookings'][booking].append(entry) |
|
data['timeline'].append(entry) |
|
data['doctors'].add(entry['doctor']) |
|
|
|
form_lower = entry['form'].lower() |
|
if 'medication' in form_lower or 'drug' in form_lower: |
|
data['medications'][entry['item']].append(entry) |
|
elif 'diagnosis' in form_lower or 'condition' in form_lower: |
|
data['diagnoses'][entry['item']].append(entry) |
|
elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower: |
|
data['tests'][entry['item']].append(entry) |
|
elif 'procedure' in form_lower or 'surgery' in form_lower: |
|
data['procedures'][entry['item']].append(entry) |
|
|
|
return data |
|
|
|
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str: |
|
prompt_lines = [ |
|
"**Comprehensive Patient Analysis**", |
|
f"Analyzing {len(bookings)} bookings", |
|
"", |
|
"**Key Analysis Points:**", |
|
"- Chronological progression of symptoms", |
|
"- Medication changes and interactions", |
|
"- Diagnostic consistency across providers", |
|
"- Missed diagnostic opportunities", |
|
"- Gaps in follow-up", |
|
"", |
|
"**Patient Timeline:**" |
|
] |
|
|
|
for entry in patient_data['timeline']: |
|
if entry['booking'] in bookings: |
|
prompt_lines.append( |
|
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})" |
|
) |
|
|
|
prompt_lines.extend([ |
|
"", |
|
"**Medication History:**", |
|
*[f"- {med}: " + " → ".join( |
|
f"{e['date']}: {e['response']}" |
|
for e in entries if e['booking'] in bookings |
|
) for med, entries in patient_data['medications'].items()], |
|
"", |
|
"**Required Analysis Format:**", |
|
"### Diagnostic Patterns", |
|
"### Medication Analysis", |
|
"### Provider Consistency", |
|
"### Missed Opportunities", |
|
"### Recommendations" |
|
]) |
|
|
|
return "\n".join(prompt_lines) |
|
|
|
def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]: |
|
all_bookings = list(patient_data['bookings'].keys()) |
|
booking_sizes = [] |
|
|
|
for booking in all_bookings: |
|
entries = patient_data['bookings'][booking] |
|
size = sum(estimate_tokens(str(e)) for e in entries) |
|
booking_sizes.append((booking, size)) |
|
|
|
booking_sizes.sort(key=lambda x: x[1], reverse=True) |
|
chunks = [[] for _ in range(3)] |
|
chunk_sizes = [0, 0, 0] |
|
|
|
for booking, size in booking_sizes: |
|
min_chunk = chunk_sizes.index(min(chunk_sizes)) |
|
chunks[min_chunk].append(booking) |
|
chunk_sizes[min_chunk] += size |
|
|
|
return chunks |
|
|
|
def init_agent(): |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
|
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[] |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
def analyze_with_agent(agent, prompt: str) -> str: |
|
try: |
|
response = "" |
|
for result in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, 'content') and r.content: |
|
response += clean_response(r.content) + "\n" |
|
elif isinstance(result, str): |
|
response += clean_response(result) + "\n" |
|
elif hasattr(result, 'content'): |
|
response += clean_response(result.content) + "\n" |
|
|
|
return response.strip() |
|
except Exception as e: |
|
return f"Error in analysis: {str(e)}" |
|
|
|
def create_ui(agent): |
|
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo: |
|
gr.Markdown("# 🏥 Patient History Analyzer") |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Analysis"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
file_upload = gr.File( |
|
label="Upload Excel File", |
|
file_types=[".xlsx"], |
|
file_count="single" |
|
) |
|
analyze_btn = gr.Button("Analyze", variant="primary") |
|
status = gr.Markdown("Ready") |
|
|
|
with gr.Column(scale=2): |
|
output = gr.Markdown() |
|
report = gr.File(label="Download Report") |
|
|
|
with gr.TabItem("Instructions"): |
|
gr.Markdown(""" |
|
## How to Use |
|
1. Upload patient history Excel |
|
2. Click Analyze |
|
3. View/download report |
|
|
|
**Required Columns:** |
|
- Booking Number |
|
- Interview Date |
|
- Interviewer |
|
- Form Name |
|
- Form Item |
|
- Item Response |
|
- Description |
|
""") |
|
|
|
def analyze(file): |
|
if not file: |
|
raise gr.Error("Please upload a file") |
|
|
|
try: |
|
df = pd.read_excel(file.name) |
|
patient_data = process_patient_data(df) |
|
chunks = chunk_bookings(patient_data) |
|
full_report = [] |
|
|
|
for i, bookings in enumerate(chunks, 1): |
|
prompt = generate_analysis_prompt(patient_data, bookings) |
|
response = analyze_with_agent(agent, prompt) |
|
full_report.append(f"## Chunk {i}\n{response}\n") |
|
yield "\n".join(full_report), None |
|
|
|
|
|
if len(chunks) > 1: |
|
summary_prompt = "Create final summary combining all chunks" |
|
summary = analyze_with_agent(agent, summary_prompt) |
|
full_report.append(f"## Final Summary\n{summary}\n") |
|
|
|
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") |
|
with open(report_path, 'w') as f: |
|
f.write("\n".join(full_report)) |
|
|
|
yield "\n".join(full_report), report_path |
|
|
|
except Exception as e: |
|
raise gr.Error(f"Error: {str(e)}") |
|
|
|
analyze_btn.click( |
|
analyze, |
|
inputs=file_upload, |
|
outputs=[output, report] |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True |
|
) |
|
except Exception as e: |
|
print(f"Error: {str(e)}") |
|
sys.exit(1) |