File size: 31,859 Bytes
f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 fcebf54 0a3f912 94b553f 0a3f912 fcebf54 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 55e3db0 f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e fcebf54 4cf6d2e fcebf54 55e3db0 f394b25 4cf6d2e fcebf54 f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e fcebf54 f394b25 4cf6d2e f394b25 4cf6d2e 2e5b8b2 fcebf54 f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e fcebf54 f394b25 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e fcebf54 55e3db0 4cf6d2e f394b25 4cf6d2e f394b25 4cf6d2e 55e3db0 4cf6d2e fcebf54 ba63eca f394b25 4cf6d2e 2e5b8b2 fcebf54 4cf6d2e f394b25 4cf6d2e fcebf54 4cf6d2e fcebf54 4cf6d2e fcebf54 4cf6d2e fcebf54 2cbc57b 4cf6d2e 2cbc57b 4cf6d2e 2cbc57b 4cf6d2e e579d17 2cbc57b 4cf6d2e fcebf54 4cf6d2e fcebf54 4cf6d2e fcebf54 4cf6d2e fcebf54 94b553f 2cbc57b fcebf54 4cf6d2e fcebf54 94b553f 4cf6d2e fcebf54 f394b25 2cbc57b 4cf6d2e fcebf54 4cf6d2e fcebf54 4cf6d2e 55e3db0 f394b25 4cf6d2e f394b25 4cf6d2e f394b25 55e3db0 f394b25 4cf6d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Generator, Any, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
from transformers import AutoTokenizer
from pathlib import Path
# ==================== CONFIGURATION ====================
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Directory Setup
BASE_DIR = Path("/data/hf_cache")
DIRECTORIES = {
"models": BASE_DIR / "txagent_models",
"tools": BASE_DIR / "tool_cache",
"cache": BASE_DIR / "cache",
"reports": BASE_DIR / "reports",
"vllm": BASE_DIR / "vllm_cache"
}
for dir_path in DIRECTORIES.values():
dir_path.mkdir(parents=True, exist_ok=True)
# Environment Configuration
os.environ.update({
"HF_HOME": str(DIRECTORIES["models"]),
"TRANSFORMERS_CACHE": str(DIRECTORIES["models"]),
"VLLM_CACHE_DIR": str(DIRECTORIES["vllm"]),
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
# Add src path for txagent
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# ==================== CORE COMPONENTS ====================
class FileProcessor:
"""Handles all file processing operations"""
@staticmethod
def extract_pdf_content(file_path: str) -> str:
"""Extract text from PDF with parallel processing"""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if not total_pages:
return ""
def process_batch(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
text = page.extract_text() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{text.strip()}"))
return results
batch_size = min(10, total_pages)
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
with ThreadPoolExecutor(max_workers=min(6, os.cpu_count() or 4)) as executor:
futures = [executor.submit(process_batch, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
return "\n\n".join(filter(None, text_chunks))
except Exception as e:
logger.error(f"PDF extraction failed: {e}")
return f"PDF processing error: {str(e)}"
@staticmethod
def process_tabular_data(file_path: str, file_type: str) -> List[Dict]:
"""Process Excel or CSV files"""
try:
if file_type == "csv":
chunks = pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000
)
df = pd.concat(chunks) if chunks else pd.DataFrame()
else: # Excel
try:
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
return [{
"filename": os.path.basename(file_path),
"rows": df.where(pd.notnull(df), "").astype(str).values.tolist(),
"type": file_type
}]
except Exception as e:
logger.error(f"{file_type.upper()} processing failed: {e}")
return [{"error": f"{file_type.upper()} processing error: {str(e)}"}]
@classmethod
def handle_upload(cls, file_path: str, file_type: str) -> List[Dict]:
"""Route file processing based on type"""
processor_map = {
"pdf": cls.extract_pdf_content,
"xls": lambda x: cls.process_tabular_data(x, "excel"),
"xlsx": lambda x: cls.process_tabular_data(x, "excel"),
"csv": lambda x: cls.process_tabular_data(x, "csv")
}
if file_type not in processor_map:
return [{"error": f"Unsupported file type: {file_type}"}]
try:
result = processor_map[file_type](file_path)
if file_type == "pdf":
return [{
"filename": os.path.basename(file_path),
"content": result,
"type": "pdf"
}]
return result
except Exception as e:
logger.error(f"File processing failed: {e}")
return [{"error": f"File processing error: {str(e)}"}]
class TextAnalyzer:
"""Handles text processing and analysis"""
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
self.cache = Cache(DIRECTORIES["cache"], size_limit=10*1024**3)
def chunk_content(self, text: str, max_tokens: int = 1800) -> List[str]:
"""Split text into token-limited chunks"""
tokens = self.tokenizer.encode(text)
return [
self.tokenizer.decode(tokens[i:i+max_tokens])
for i in range(0, len(tokens), max_tokens)
]
def clean_output(self, text: str) -> str:
"""Clean and format model response"""
text = text.encode("utf-8", "ignore").decode("utf-8")
text = re.sub(
r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\."
r"|Since the previous attempts.*?\.|I need to.*?medications\."
r"|Retrieving tools.*?\.", "", text, flags=re.DOTALL
)
diagnoses = []
in_section = False
for line in text.splitlines():
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_section = False
continue
if in_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
return " ".join(diagnoses) if diagnoses else ""
def generate_summary(self, analysis: str) -> str:
"""Create concise clinical summary"""
findings = []
for chunk in analysis.split("--- Analysis for Chunk"):
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
in_section = False
for line in chunk.splitlines():
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_section = False
continue
if in_section and re.match(r"-\s*.+", line):
finding = re.sub(r"^\-\s*", "", line).strip()
if finding and not re.match(r"No issues identified", finding, re.IGNORECASE):
findings.append(finding)
unique_findings = list(dict.fromkeys(findings))
if not unique_findings:
return "No clinical concerns identified in the provided records."
if len(unique_findings) > 1:
summary = "Potential concerns include: " + ", ".join(unique_findings[:-1])
summary += f", and {unique_findings[-1]}"
else:
summary = "Potential concern identified: " + unique_findings[0]
return summary + ". Recommend urgent clinical review."
class ClinicalAgent:
"""Main application controller"""
def __init__(self):
self.agent = self._init_agent()
self.file_processor = FileProcessor()
self.text_analyzer = TextAnalyzer()
def _init_agent(self) -> Any:
"""Initialize the AI agent"""
logger.info("Initializing clinical agent...")
self._log_system_status("pre-init")
tool_path = DIRECTORIES["tools"] / "new_tool.json"
if not tool_path.exists():
default_tools = Path("data/new_tool.json")
if default_tools.exists():
shutil.copy(default_tools, tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": str(tool_path)},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
self._log_system_status("post-init")
logger.info("Clinical agent ready")
return agent
def _log_system_status(self, phase: str) -> None:
"""Log system resource utilization"""
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{phase}] CPU: {cpu:.1f}% | RAM: {mem.used//(1024**2)}MB/{mem.total//(1024**2)}MB")
gpu_info = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu",
"--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if gpu_info.returncode == 0:
used, total, util = gpu_info.stdout.strip().split(", ")
logger.info(f"[{phase}] GPU: {used}MB/{total}MB | Util: {util}%")
except Exception as e:
logger.error(f"Resource monitoring failed: {e}")
def process_stream(self, prompt: str, history: List[Dict]) -> Generator[Dict, None, None]:
"""Stream the agent's responses"""
full_response = ""
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
if not chunk:
continue
if isinstance(chunk, list):
for msg in chunk:
if hasattr(msg, 'content') and msg.content:
cleaned = self.text_analyzer.clean_output(msg.content)
if cleaned:
full_response += cleaned + " "
yield {"role": "assistant", "content": full_response}
elif isinstance(chunk, str) and chunk.strip():
cleaned = self.text_analyzer.clean_output(chunk)
if cleaned:
full_response += cleaned + " "
yield {"role": "assistant", "content": full_response}
def analyze_records(self, message: str, history: List[Dict], files: List) -> Generator[tuple, None, None]:
"""Main analysis workflow"""
outputs = {
"chatbot": history.copy(),
"download_output": None,
"final_summary": "",
"progress": {"value": "Initializing...", "visible": True}
}
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
try:
# Add user message
history.append({"role": "user", "content": message})
outputs["chatbot"] = history
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
# Process files
extracted = []
file_hash = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
file_type = Path(f.name).suffix[1:].lower()
futures.append(executor.submit(
self.file_processor.handle_upload,
f.name,
file_type
))
for i, future in enumerate(as_completed(futures), 1):
try:
extracted.extend(future.result())
outputs["progress"] = self._format_progress(i, len(files), "Processing files")
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
except Exception as e:
logger.error(f"File processing failed: {e}")
extracted.append({"error": str(e)})
if files and os.path.exists(files[0].name):
file_hash = hashlib.md5(open(files[0].name, "rb").read()).hexdigest()
history.append({"role": "assistant", "content": "✅ Files processed successfully"})
outputs.update({
"chatbot": history,
"progress": self._format_progress(len(files), len(files), "Files processed")
})
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
# Analyze content
text_content = "\n".join(json.dumps(item) for item in extracted)
chunks = self.text_analyzer.chunk_content(text_content)
full_analysis = ""
for idx, chunk in enumerate(chunks, 1):
prompt = f"""
Analyze this clinical documentation for potential missed diagnoses. Provide:
1. Specific clinical findings with references (e.g., "Elevated BP (160/95) on page 3")
2. Their clinical significance
3. Urgency of review
Use concise, continuous prose without bullet points. If no concerns, state "No missed diagnoses identified."
Document Excerpt (Part {idx}/{len(chunks)}):
{chunk[:1750]}
"""
history.append({"role": "assistant", "content": ""})
outputs.update({
"chatbot": history,
"progress": self._format_progress(idx, len(chunks), "Analyzing")
})
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
# Stream analysis
chunk_response = ""
for update in self.process_stream(prompt, history):
history[-1] = update
chunk_response = update["content"]
outputs.update({
"chatbot": history,
"progress": self._format_progress(idx, len(chunks), "Analyzing")
})
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
full_analysis += f"--- Analysis Part {idx} ---\n{chunk_response}\n"
torch.cuda.empty_cache()
gc.collect()
# Final outputs
summary = self.text_analyzer.generate_summary(full_analysis)
report_path = DIRECTORIES["reports"] / f"{file_hash}_report.txt" if file_hash else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(full_analysis + "\n\nSUMMARY:\n" + summary)
outputs.update({
"download_output": str(report_path) if report_path and report_path.exists() else None,
"final_summary": summary,
"progress": {"visible": False}
})
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
except Exception as e:
logger.error(f"Analysis failed: {e}")
history.append({"role": "assistant", "content": f"❌ Analysis error: {str(e)}"})
outputs.update({
"chatbot": history,
"final_summary": f"Error: {str(e)}",
"progress": {"visible": False}
})
yield (outputs["chatbot"], outputs["download_output"], outputs["final_summary"], outputs["progress"])
def _format_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]:
"""Format progress update for UI"""
status = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
return {"value": status, "visible": True, "label": f"Progress: {status}"}
def create_interface(self) -> gr.Blocks:
"""Build the Gradio interface"""
css = """
/* ==================== BASE STYLES ==================== */
:root {
--primary-color: #4f46e5;
--primary-dark: #4338ca;
--border-radius: 8px;
--transition: all 0.3s ease;
--shadow: 0 4px 12px rgba(0,0,0,0.1);
--font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
--background: #ffffff;
--text-color: #1e293b;
--chat-bg: #f8fafc;
--message-bg: #e2e8f0;
--panel-bg: rgba(248, 250, 252, 0.9);
--panel-dark-bg: rgba(30, 41, 59, 0.9);
}
[data-theme="dark"] {
--background: #1e2a44;
--text-color: #f1f5f9;
--chat-bg: #2d3b55;
--message-bg: #475569;
--panel-bg: var(--panel-dark-bg);
}
body, .gradio-container {
font-family: var(--font-family);
background: var(--background);
color: var(--text-color);
margin: 0;
padding: 0;
transition: var(--transition);
}
/* ==================== LAYOUT ==================== */
.gradio-container {
max-width: 1200px;
margin: 0 auto;
padding: 1.5rem;
display: flex;
flex-direction: column;
gap: 1.5rem;
}
.chat-container {
background: var(--chat-bg);
border-radius: var(--border-radius);
border: 1px solid #e2e8f0;
padding: 1.5rem;
min-height: 50vh;
max-height: 80vh;
overflow-y: auto;
box-shadow: var(--shadow);
margin-bottom: 4rem;
}
.summary-panel {
background: var(--panel-bg);
border-left: 4px solid var(--primary-color);
padding: 1rem;
border-radius: var(--border-radius);
margin-bottom: 1rem;
box-shadow: var(--shadow);
backdrop-filter: blur(8px);
}
.upload-area {
border: 2px dashed #cbd5e1;
border-radius: var(--border-radius);
padding: 1.5rem;
margin: 0.75rem 0;
transition: var(--transition);
}
.upload-area:hover {
border-color: var(--primary-color);
background: rgba(79, 70, 229, 0.05);
}
/* ==================== COMPONENTS ==================== */
.chat__message {
margin: 0.75rem 0;
padding: 0.75rem 1rem;
border-radius: var(--border-radius);
max-width: 85%;
transition: var(--transition);
background: var(--message-bg);
border: 1px solid rgba(0,0,0,0.05);
animation: messageFade 0.3s ease;
}
.chat__message:hover {
transform: translateY(-2px);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.chat__message.user {
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
color: white;
margin-left: auto;
}
.chat__message.assistant {
background: var(--message-bg);
color: var(--text-color);
}
.input-container {
display: flex;
align-items: center;
gap: 0.75rem;
background: var(--chat-bg);
padding: 0.75rem 1rem;
border-radius: 1.5rem;
box-shadow: var(--shadow);
position: sticky;
bottom: 1rem;
z-index: 10;
}
.input__textbox {
flex-grow: 1;
border: none;
background: transparent;
color: var(--text-color);
outline: none;
font-size: 1rem;
}
.input__textbox:focus {
border-bottom: 2px solid var(--primary-color);
}
.submit-btn {
background: linear-gradient(135deg, var(--primary-color), var(--primary-dark));
color: white;
border: none;
border-radius: 1rem;
padding: 0.5rem 1.25rem;
font-size: 0.9rem;
transition: var(--transition);
}
.submit-btn:hover {
transform: scale(1.05);
}
.submit-btn:active {
animation: glow 0.3s ease;
}
.tooltip {
position: relative;
}
.tooltip:hover::after {
content: attr(data-tip);
position: absolute;
top: -2.5rem;
left: 50%;
transform: translateX(-50%);
background: #1e293b;
color: white;
padding: 0.4rem 0.8rem;
border-radius: 0.4rem;
font-size: 0.85rem;
max-width: 200px;
white-space: normal;
text-align: center;
z-index: 1000;
animation: fadeIn 0.3s ease;
}
.progress-tracker {
position: relative;
padding: 0.5rem;
background: var(--message-bg);
border-radius: var(--border-radius);
margin-top: 0.75rem;
overflow: hidden;
}
.progress-tracker::before {
content: '';
position: absolute;
top: 0;
left: 0;
height: 100%;
width: 0;
background: linear-gradient(to right, var(--primary-color), var(--primary-dark));
opacity: 0.3;
animation: progress 2s ease-in-out infinite;
}
/* ==================== ANIMATIONS ==================== */
@keyframes glow {
0%, 100% { transform: scale(1); opacity: 1; }
50% { transform: scale(1.1); opacity: 0.8; }
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
@keyframes messageFade {
from { opacity: 0; transform: translateY(10px) scale(0.95); }
to { opacity: 1; transform: translateY(0) scale(1); }
}
@keyframes progress {
0% { width: 0; }
50% { width: 60%; }
100% { width: 0; }
}
/* ==================== THEMES ==================== */
[data-theme="dark"] .chat-container {
border-color: #475569;
}
[data-theme="dark"] .upload-area {
border-color: #64748b;
}
[data-theme="dark"] .upload-area:hover {
background: rgba(79, 70, 229, 0.1);
}
[data-theme="dark"] .summary-panel {
border-left-color: #818cf8;
}
/* ==================== MEDIA QUERIES ==================== */
@media (max-width: 768px) {
.gradio-container {
padding: 1rem;
}
.chat-container {
min-height: 40vh;
max-height: 70vh;
margin-bottom: 3.5rem;
}
.summary-panel {
padding: 0.75rem;
}
.upload-area {
padding: 1rem;
}
.input-container {
gap: 0.5rem;
padding: 0.5rem;
}
.submit-btn {
padding: 0.4rem 1rem;
}
}
@media (max-width: 480px) {
.chat-container {
padding: 1rem;
margin-bottom: 3rem;
}
.input-container {
flex-direction: column;
padding: 0.5rem;
}
.input__textbox {
font-size: 0.9rem;
}
.submit-btn {
width: 100%;
padding: 0.5rem;
font-size: 0.85rem;
}
.chat__message {
max-width: 90%;
padding: 0.5rem 0.75rem;
}
.tooltip:hover::after {
top: auto;
bottom: -2.5rem;
max-width: 80vw;
}
}
"""
js = """
function applyTheme(theme) {
document.documentElement.setAttribute('data-theme', theme);
localStorage.setItem('theme', theme);
}
document.addEventListener('DOMContentLoaded', () => {
const savedTheme = localStorage.getItem('theme') || 'light';
applyTheme(savedTheme);
});
"""
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate"
),
title="Clinical Oversight Assistant",
css=css,
js=js
) as app:
# Header
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='color: var(--primary-color); margin-bottom: 8px;'>🩺 Clinical Oversight Assistant</h1>
<p style='color: #64748b;'>
AI-powered analysis for identifying potential missed diagnoses in patient records
</p>
</div>
""")
with gr.Row(equal_height=False):
# Main Chat Panel
with gr.Column(scale=3):
gr.Markdown(
"<div class='tooltip' data-tip='View conversation history'>**Clinical Analysis Conversation**</div>"
)
chatbot = gr.Chatbot(
label="",
height=650,
show_copy_button=True,
avatar_images=(
"assets/user.png",
"assets/assistant.png"
) if Path("assets/user.png").exists() else None,
bubble_full_width=False,
type="messages",
elem_classes=["chat-container"]
)
# Results Panel
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(
"<div class='tooltip' data-tip='Summary of findings'>**Clinical Summary**</div>"
)
final_summary = gr.Markdown(
"<div class='tooltip' data-tip='Analysis results'>Analysis results will appear here...</div>",
elem_classes=["summary-panel"]
)
with gr.Group():
gr.Markdown(
"<div class='tooltip' data-tip='Download report'>**Report Export**</div>"
)
download_output = gr.File(
label="Download Full Analysis",
visible=False,
interactive=False
)
# Input Section
with gr.Row():
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Patient Records",
elem_classes=["upload-area"],
elem_id="file-upload"
)
with gr.Row(elem_classes=["input-container"]):
user_input = gr.Textbox(
placeholder="Enter your clinical query or analysis request...",
show_label=False,
container=False,
scale=7,
autofocus=True,
elem_classes=["input__textbox"],
elem_id="user-input"
)
submit_btn = gr.Button(
"Analyze",
variant="primary",
scale=1,
min_width=120,
elem_classes=["submit-btn"],
elem_id="submit-btn"
)
# Hidden progress tracker
progress_tracker = gr.Textbox(
label="Analysis Progress",
visible=False,
interactive=False,
elem_classes=["progress-tracker"],
elem_id="progress-tracker"
)
# Event handlers
submit_btn.click(
self.analyze_records,
inputs=[user_input, chatbot, file_upload],
outputs=[chatbot, download_output, final_summary, progress_tracker],
show_progress="hidden"
)
user_input.submit(
self.analyze_records,
inputs=[user_input, chatbot, file_upload],
outputs=[chatbot, download_output, final_summary, progress_tracker],
show_progress="hidden"
)
app.load(
lambda: [[], None, "<div class='tooltip' data-tip='Analysis results'>Analysis results will appear here...</div>", "", None, {"visible": False}],
outputs=[chatbot, download_output, final_summary, user_input, file_upload, progress_tracker],
queue=False
)
return app
# ==================== APPLICATION ENTRY POINT ====================
if __name__ == "__main__":
try:
logger.info("Launching Clinical Oversight Assistant...")
clinical_app = ClinicalAgent()
interface = clinical_app.create_interface()
interface.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[str(DIRECTORIES["reports"])],
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group() |