File size: 10,906 Bytes
f858e79
abc4511
 
 
7323cb6
abc4511
 
7323cb6
abc4511
7323cb6
abc4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24be23
1da2cfd
abc4511
 
 
 
 
1da2cfd
dae38a2
9ef8abc
c441954
abc4511
 
 
 
 
 
 
dae38a2
7323cb6
 
 
 
abc4511
1da2cfd
abc4511
1da2cfd
abc4511
 
 
 
 
 
 
1da2cfd
abc4511
e24be23
abc4511
dae38a2
abc4511
 
7323cb6
abc4511
 
1da2cfd
abc4511
 
 
 
1da2cfd
abc4511
 
 
 
dae38a2
abc4511
 
 
 
 
 
 
dae38a2
abc4511
dae38a2
abc4511
7323cb6
dae38a2
abc4511
7323cb6
abc4511
 
 
7323cb6
abc4511
 
 
 
 
 
 
 
 
 
5f7a1a1
abc4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef8abc
abc4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24be23
 
abc4511
 
 
 
 
 
9ef8abc
 
abc4511
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache
from threading import Thread
import re
import tempfile

# Environment setup
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

# Cache directories
base_dir = "/data"
os.makedirs(base_dir, exist_ok=True)
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
report_dir = "/data/reports"
vllm_cache_dir = os.path.join(base_dir, "vllm_cache")

os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)
os.makedirs(report_dir, exist_ok=True)
os.makedirs(vllm_cache_dir, exist_ok=True)

os.environ.update({
    "TRANSFORMERS_CACHE": model_cache_dir,
    "HF_HOME": model_cache_dir,
    "VLLM_CACHE_DIR": vllm_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {
    'diagnosis', 'assessment', 'plan', 'results', 'medications',
    'allergies', 'summary', 'impression', 'findings', 'recommendations'
}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            return open(cache_path, "r", encoding="utf-8").read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
            Thread(target=full_pdf_processing, args=(file_path, h)).start()

        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})

        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})

        else:
            return json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result

    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def full_pdf_processing(file_path: str, file_hash: str):
    try:
        cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
        if os.path.exists(cache_path):
            return
        with pdfplumber.open(file_path) as pdf:
            full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
        result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out:
            out.write(full_text)
    except Exception as e:
        print(f"Background processing failed: {str(e)}")

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        <h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
        <h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
        """)

        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        conversation_state = gr.State([])
        download_output = gr.File(label="Download Full Report")

        def analyze_potential_oversights(message: str, history: list, conversation: list, files: list):
            start_time = time.time()
            try:
                # Add initial user and temporary assistant messages to update UI immediately
                history = history + [
                    {"role": "user", "content": message},
                    {"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
                ]
                yield history, None

                extracted_data = ""
                file_hash_value = ""
                if files and isinstance(files, list):
                    with ThreadPoolExecutor(max_workers=4) as executor:
                        futures = [
                            executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
                            for f in files if hasattr(f, 'name')
                        ]
                        extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
                        file_hash_value = file_hash(files[0].name) if hasattr(files[0], 'name') else ""

                # Truncate extracted data to reduce overall token count (tune the character limit as needed)
                max_extracted_chars = 12000
                truncated_data = extracted_data[:max_extracted_chars]

                analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{truncated_data}

### Potential Oversights:
"""
                response = ""
                try:
                    # Stream the agent responses; skip any None chunks
                    for chunk in agent.run_gradio_chat(
                        message=analysis_prompt,
                        history=[],
                        temperature=0.2,
                        max_new_tokens=1024,
                        max_token=4096,
                        call_agent=False,
                        conversation=conversation
                    ):
                        if chunk is None:
                            continue
                        if isinstance(chunk, str):
                            response += chunk
                        elif isinstance(chunk, list):
                            response += "".join([c.content for c in chunk if hasattr(c, 'content')])
                        # Yield partial response updates
                        cleaned = response.replace("[TOOL_CALLS]", "").strip()
                        yield history[:-1] + [{"role": "assistant", "content": cleaned}], None
                except Exception as agent_error:
                    history.append({"role": "assistant", "content": f"❌ Analysis failed during processing: {str(agent_error)}"})
                    yield history, None
                    return

                final_output = response.replace("[TOOL_CALLS]", "").strip()
                if not final_output:
                    final_output = "No clear oversights identified. Recommend comprehensive review."

                report_path = None
                if file_hash_value:
                    possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
                    if os.path.exists(possible_report):
                        report_path = possible_report

                history = history[:-1] + [{"role": "assistant", "content": final_output}]
                yield history, report_path

            except Exception as e:
                history.append({"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"})
                yield history, None

        inputs = [msg_input, chatbot, conversation_state, file_upload]
        outputs = [chatbot, download_output]
        send_btn.click(analyze_potential_oversights, inputs=inputs, outputs=outputs)
        msg_input.submit(analyze_potential_oversights, inputs=inputs, outputs=outputs)

        gr.Examples([
            ["What might have been missed in this patient's treatment?"],
            ["Are there any medication conflicts in these records?"],
            ["What abnormal results require follow-up?"]
        ], inputs=msg_input)

    return demo

if __name__ == "__main__":
    print("Initializing medical analysis agent...")
    agent = init_agent()

    print("Launching interface...")
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=["/data/reports"],
        share=False
    )