File size: 13,373 Bytes
f75a23b f394b25 d184610 f6e551c f394b25 2e8876b a7e68bf 1244d40 d16299c 1c5bd8e d16299c d8282f1 f6e551c d16299c f6e551c f75a23b d16299c 1244d40 1de8c2b f260d4a f6e551c d16299c f6e551c d16299c f6e551c d16299c f6e551c f260d4a f6e551c ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 28e1ce8 ad85a12 f6e551c d16299c f260d4a f6e551c 6e39ead f6e551c 6e39ead f6e551c d16299c f6e551c d16299c 13ad0d3 d16299c f6e551c d16299c 9a0b74b f260d4a 2e8876b 9a0b74b 2200d70 77810f8 2e8876b 9a0b74b 77810f8 585f453 2e8876b 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 2e8876b f260d4a 585f453 98f2d10 2e8876b 9a0b74b affa0af d16299c f260d4a 585f453 98f2d10 585f453 2200d70 585f453 6e39ead 2e8876b 9a0b74b 2e8876b 5b0bfb5 2e8876b 585f453 a71a831 55e3db0 f394b25 d8282f1 d16299c 13ad0d3 d8282f1 1bdb280 585f453 d8282f1 13ad0d3 c7670bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 32768 # Model's maximum sequence length
MAX_CHUNK_TOKENS = 8192 # Chunk size aligned with max_num_batched_tokens
MAX_NEW_TOKENS = 2048 # Maximum tokens for generation
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template overhead
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""Estimate the number of tokens based on character length."""
return len(text) // 3.5 + 1 # Add 1 to avoid zero estimates
def extract_text_from_excel(file_path: str) -> str:
"""Extract text from all sheets in an Excel file."""
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
"""
Split text into chunks, ensuring each chunk is within token limits,
accounting for prompt overhead.
"""
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk: # Save the current chunk if it's not empty
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
"""Build a prompt for analyzing a chunk of clinical data."""
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
"""Initialize the TxAgent with model and tool configurations."""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
"""Process the Excel file and generate a final report."""
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
messages.append({"role": "assistant", "content": "β³ Extracting and analyzing data..."})
# Extract text and split into chunks
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text, max_tokens=MAX_CHUNK_TOKENS)
chunk_responses = []
# Process each chunk
for i, chunk in enumerate(chunks):
messages.append({"role": "assistant", "content": f"π Analyzing chunk {i+1}/{len(chunks)}..."})
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
messages.append({"role": "assistant", "content": f"β Chunk {i+1} prompt too long ({prompt_tokens} tokens). Skipping..."})
continue
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error analyzing chunk {i+1}: {str(e)}"})
continue
chunk_responses.append(clean_response(response))
messages.append({"role": "assistant", "content": f"β
Chunk {i+1} analysis complete"})
if not chunk_responses:
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
return messages, report_path
# Summarize chunk responses incrementally to avoid token limit
summary = ""
current_summary_tokens = 0
for i, response in enumerate(chunk_responses):
response_tokens = estimate_tokens(response)
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
# Summarize current summary
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
summary_response = ""
try:
for result in agent.run_gradio_chat(
message=summary_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
summary_response += result
elif hasattr(result, "content"):
summary_response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
summary_response += r.content
summary = clean_response(summary_response)
current_summary_tokens = estimate_tokens(summary)
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error summarizing intermediate results: {str(e)}"})
return messages, report_path
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
current_summary_tokens += response_tokens
# Final summarization
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
messages.append({"role": "assistant", "content": "π Generating final report..."})
final_report_text = ""
try:
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif hasattr(result, "content"):
final_report_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error generating final report: {str(e)}"})
return messages, report_path
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(final_report_text)}"
messages[-1]["content"] = f"π Final Report:\n\n{clean_response(final_report_text)}"
# Save the report
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"β
Report generated and saved: report_{timestamp}.md"})
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
return messages, report_path
def create_ui(agent):
"""Create the Gradio UI for the patient history analysis tool."""
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("## π₯ Patient History Analysis Tool")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Clinical Assistant",
show_copy_button=True,
height=600,
type="messages",
avatar_images=(
None,
"https://i.imgur.com/6wX7Zb4.png"
)
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
height=100
)
analyze_btn = gr.Button(
"π§ Analyze Patient History",
variant="primary"
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False
)
# State to maintain chatbot messages
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
report_update = gr.update(visible=report_path is not None, value=report_path)
return messages, report_update, messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"],
share=False
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1) |