File size: 6,926 Bytes
f75a23b f394b25 d184610 f6e551c f394b25 318bbe7 a7e68bf 1244d40 d16299c 1c5bd8e d16299c d8282f1 f6e551c d16299c f6e551c f75a23b d16299c 1244d40 1de8c2b 13ad0d3 f6e551c d16299c f6e551c d16299c f6e551c d16299c 6e39ead f6e551c 6e39ead ad85a12 28e1ce8 ad85a12 28e1ce8 ad85a12 f6e551c d184610 d16299c f6e551c 6e39ead f6e551c 6e39ead f6e551c d16299c f6e551c d16299c 13ad0d3 d16299c f6e551c d16299c 6e39ead c7670bd 77810f8 c7670bd 77810f8 318bbe7 d16299c 318bbe7 f6e551c 318bbe7 c7670bd 318bbe7 c7670bd 318bbe7 c7670bd affa0af 6e39ead d16299c 6e39ead 7fb3265 6e39ead 5b0bfb5 77810f8 6e39ead d8282f1 6e39ead a71a831 55e3db0 6e39ead f394b25 d8282f1 d16299c 13ad0d3 d8282f1 1bdb280 f6e551c d8282f1 13ad0d3 c7670bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Generator, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768
MAX_NEW_TOKENS = 2048
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
tokens = estimate_tokens(line)
if current_tokens + tokens > max_tokens:
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = tokens
else:
current_chunk.append(line)
current_tokens += tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def stream_final_report(agent, file) -> Generator[Tuple[List[Dict[str, str]], str], None, None]:
if file is None or not hasattr(file, "name"):
yield ([{"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."}], "")
return
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text)
chunk_responses = []
for chunk in chunks:
prompt = build_prompt_from_text(chunk)
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
chunk_responses.append(clean_response(response))
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key findings above."
messages = [{"role": "user", "content": f"[Excel Uploaded: {file.name}]"}]
stream_text = ""
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
stream_text += result
elif hasattr(result, "content"):
stream_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
stream_text += r.content
messages.append({"role": "assistant", "content": clean_response(stream_text)})
yield (messages, None)
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(stream_text)}"
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": final_report})
yield (messages, report_path)
def create_ui(agent):
with gr.Blocks(title="Patient History Chat") as demo:
chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True, type="messages")
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("🧠 Analyze Patient History")
report_output = gr.File(label="Download Report")
analyze_btn.click(
fn=lambda file: stream_final_report(agent, file),
inputs=[file_upload],
outputs=[chatbot, report_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"]
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1) |