File size: 8,943 Bytes
7e55ae2 a046927 f2a9805 1dd5b3f f2a9805 a046927 f2a9805 59f3278 f2a9805 a1a096d f6e551c a57b988 f6e551c 8c16b9e a1a096d 8c16b9e 4bfbcac 0fb33af f75a23b c5da27e 8b1bbeb 1244d40 f2a9805 a1a096d f6e551c 1dd5b3f a1a096d ad85a12 59f3278 1dd5b3f 936692d 1dd5b3f 936692d 2639902 a046927 a53de3c 936692d a046927 1a611b9 8b1bbeb 1dd5b3f a1a096d 1dd5b3f a1a096d 1dd5b3f a1a096d 1dd5b3f ad85a12 a1a096d 1dd5b3f a1a096d ad85a12 f2a9805 1dd5b3f a53de3c a1a096d 59f3278 a1a096d 1a611b9 a1a096d 1a611b9 a1a096d 1a611b9 a57b988 f2a9805 67af08d f2a9805 a046927 a1a096d f2a9805 a1a096d a53de3c a1a096d f2a9805 a1a096d f2a9805 a1a096d f2a9805 a1a096d 1dd5b3f a1a096d 1dd5b3f a1a096d 1dd5b3f f2a9805 a1a096d f2a9805 1dd5b3f a1a096d 1dd5b3f a53de3c a1a096d 1dd5b3f c5da27e 1dd5b3f a1a096d c5da27e a1a096d 1dd5b3f a1a096d c5da27e a1a096d aa559b4 8c16b9e 6281300 b4dbed8 ab7cf07 b4dbed8 6fa12a9 b4dbed8 6281300 b4dbed8 ab7cf07 6281300 f2a9805 1dd5b3f b4dbed8 1dd5b3f a046927 1dd5b3f a1a096d 26faa43 1dd5b3f a71a831 b4dbed8 f2a9805 abd27cc f2a9805 15ff01f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import sys
import os
import json
import shutil
import re
import gc
import time
from datetime import datetime
from typing import List, Tuple, Dict, Union
import pandas as pd
import gradio as gr
import torch
# === Configuration ===
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# === Constants ===
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
BATCH_SIZE = 2
PROMPT_OVERHEAD = 300
SAFE_SLEEP = 0.5 # seconds between batches
# === Utility Functions ===
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
except Exception:
continue
for idx, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(f"[{sheet_name}] {text_line}")
return "\n".join(all_text)
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, current_tokens = [], [], 0
for line in text.split("\n"):
tokens = estimate_tokens(line)
if current_tokens + tokens > effective_limit:
if current:
chunks.append("\n".join(current))
current, current_tokens = [line], tokens
else:
current.append(line)
current_tokens += tokens
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
# === Main Processing ===
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
results = []
for batch in batches:
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
try:
batch_response = ""
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
batch_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
batch_response += m.content
elif hasattr(r, "content"):
batch_response += r.content
results.append(clean_response(batch_response))
time.sleep(SAFE_SLEEP)
except Exception as e:
results.append(f"β Batch failed: {str(e)}")
time.sleep(SAFE_SLEEP * 2) # longer sleep on error
torch.cuda.empty_cache()
gc.collect()
return results
def generate_final_summary(agent, combined: str) -> str:
final_prompt = f"Provide a structured medical report based on the following summaries:\n\n{combined}\n\nRespond in detailed medical bullet points."
final_response = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
final_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
final_response += m.content
elif hasattr(r, "content"):
final_response += r.content
return clean_response(final_response)
def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
if not file or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file."})
return messages, None
messages.append({"role": "user", "content": f"π Processing file: {os.path.basename(file.name)}"})
try:
extracted = extract_text_from_excel(file.name)
chunks = split_text(extracted)
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
batch_results = analyze_batches(agent, batches)
valid = [res for res in batch_results if not res.startswith("β")]
if not valid:
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
return messages, None
summary = generate_final_summary(agent, "\n\n".join(valid))
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"# π§ Final Medical Report\n\n{summary}")
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{summary}"})
messages.append({"role": "assistant", "content": f"β
Report saved: {os.path.basename(report_path)}"})
return messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
return messages, None
def create_ui(agent):
with gr.Blocks(css="""
html, body, .gradio-container {
background: #0e1621; color: #e0e0e0;
}
button.svelte-1ipelgc {
background: linear-gradient(to right, #1e88e5, #0d47a1) !important;
border: 1px solid #0d47a1 !important;
color: white !important;
font-weight: bold !important;
}
button.svelte-1ipelgc:hover {
background: linear-gradient(to right, #2196f3, #1565c0) !important;
border: 1px solid #1565c0 !important;
color: white !important;
}
""") as demo:
gr.Markdown("""
<h2>π CPS: Clinical Patient Support System</h2>
<p>Analyze and summarize unstructured medical files using AI (optimized for A100 GPU).</p>
""")
with gr.Column():
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
upload = gr.File(label="Upload Medical File", file_types=[".xlsx"])
analyze = gr.Button("π§ Analyze")
download = gr.File(label="Download Report", visible=False, interactive=False)
state = gr.State(value=[])
def handle_analysis(file, chat):
messages, report_path = process_report(agent, file, chat)
return messages, gr.update(visible=bool(report_path), value=report_path), messages
analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])
return demo
# === Main ===
if __name__ == "__main__":
agent = init_agent()
ui = create_ui(agent)
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|