File size: 8,943 Bytes
7e55ae2
 
 
 
 
a046927
f2a9805
1dd5b3f
f2a9805
a046927
 
f2a9805
59f3278
f2a9805
a1a096d
f6e551c
 
a57b988
f6e551c
8c16b9e
a1a096d
 
8c16b9e
4bfbcac
0fb33af
f75a23b
c5da27e
 
 
 
8b1bbeb
1244d40
f2a9805
 
 
 
 
 
 
 
 
a1a096d
 
f6e551c
1dd5b3f
 
 
 
 
a1a096d
ad85a12
59f3278
1dd5b3f
936692d
1dd5b3f
936692d
2639902
a046927
a53de3c
936692d
a046927
 
 
1a611b9
8b1bbeb
1dd5b3f
a1a096d
1dd5b3f
a1a096d
1dd5b3f
 
a1a096d
 
1dd5b3f
ad85a12
a1a096d
1dd5b3f
a1a096d
 
ad85a12
 
f2a9805
1dd5b3f
a53de3c
a1a096d
59f3278
a1a096d
 
 
 
 
1a611b9
 
 
a1a096d
1a611b9
 
 
a1a096d
1a611b9
 
 
a57b988
f2a9805
 
67af08d
f2a9805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a046927
 
a1a096d
 
 
f2a9805
 
a1a096d
 
 
a53de3c
a1a096d
 
 
 
 
 
f2a9805
a1a096d
 
 
f2a9805
a1a096d
f2a9805
 
a1a096d
1dd5b3f
a1a096d
 
 
 
1dd5b3f
a1a096d
1dd5b3f
 
 
f2a9805
a1a096d
f2a9805
1dd5b3f
a1a096d
1dd5b3f
a53de3c
a1a096d
 
1dd5b3f
c5da27e
1dd5b3f
a1a096d
c5da27e
a1a096d
1dd5b3f
a1a096d
c5da27e
 
a1a096d
 
aa559b4
8c16b9e
6281300
b4dbed8
 
ab7cf07
b4dbed8
 
 
6fa12a9
b4dbed8
6281300
b4dbed8
 
 
 
ab7cf07
6281300
f2a9805
 
 
 
1dd5b3f
 
 
b4dbed8
1dd5b3f
a046927
1dd5b3f
 
 
 
a1a096d
26faa43
1dd5b3f
a71a831
b4dbed8
f2a9805
abd27cc
f2a9805
 
15ff01f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import sys
import os
import json
import shutil
import re
import gc
import time
from datetime import datetime
from typing import List, Tuple, Dict, Union
import pandas as pd
import gradio as gr
import torch

# === Configuration ===
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# === Constants ===
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
BATCH_SIZE = 2
PROMPT_OVERHEAD = 300
SAFE_SLEEP = 0.5  # seconds between batches

# === Utility Functions ===
def estimate_tokens(text: str) -> int:
    return len(text) // 4 + 1

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    return text.strip()

def extract_text_from_excel(path: str) -> str:
    all_text = []
    xls = pd.ExcelFile(path)
    for sheet_name in xls.sheet_names:
        try:
            df = xls.parse(sheet_name).astype(str).fillna("")
        except Exception:
            continue
        for idx, row in df.iterrows():
            non_empty = [cell.strip() for cell in row if cell.strip()]
            if len(non_empty) >= 2:
                text_line = " | ".join(non_empty)
                if len(text_line) > 15:
                    all_text.append(f"[{sheet_name}] {text_line}")
    return "\n".join(all_text)

def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
    effective_limit = max_tokens - PROMPT_OVERHEAD
    chunks, current, current_tokens = [], [], 0
    for line in text.split("\n"):
        tokens = estimate_tokens(line)
        if current_tokens + tokens > effective_limit:
            if current:
                chunks.append("\n".join(current))
            current, current_tokens = [line], tokens
        else:
            current.append(line)
            current_tokens += tokens
    if current:
        chunks.append("\n".join(current))
    return chunks

def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
    return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]

def build_prompt(chunk: str) -> str:
    return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""

def init_agent() -> TxAgent:
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

# === Main Processing ===
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
    results = []
    for batch in batches:
        prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
        try:
            batch_response = ""
            for r in agent.run_gradio_chat(
                message=prompt,
                history=[],
                temperature=0.0,
                max_new_tokens=MAX_NEW_TOKENS,
                max_token=MAX_MODEL_TOKENS,
                call_agent=False,
                conversation=[]
            ):
                if isinstance(r, str):
                    batch_response += r
                elif isinstance(r, list):
                    for m in r:
                        if hasattr(m, "content"):
                            batch_response += m.content
                elif hasattr(r, "content"):
                    batch_response += r.content
            results.append(clean_response(batch_response))
            time.sleep(SAFE_SLEEP)
        except Exception as e:
            results.append(f"❌ Batch failed: {str(e)}")
            time.sleep(SAFE_SLEEP * 2)  # longer sleep on error
    torch.cuda.empty_cache()
    gc.collect()
    return results

def generate_final_summary(agent, combined: str) -> str:
    final_prompt = f"Provide a structured medical report based on the following summaries:\n\n{combined}\n\nRespond in detailed medical bullet points."
    final_response = ""
    for r in agent.run_gradio_chat(
        message=final_prompt,
        history=[],
        temperature=0.0,
        max_new_tokens=MAX_NEW_TOKENS,
        max_token=MAX_MODEL_TOKENS,
        call_agent=False,
        conversation=[]
    ):
        if isinstance(r, str):
            final_response += r
        elif isinstance(r, list):
            for m in r:
                if hasattr(m, "content"):
                    final_response += m.content
        elif hasattr(r, "content"):
            final_response += r.content
    return clean_response(final_response)

def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
    if not file or not hasattr(file, "name"):
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."})
        return messages, None

    messages.append({"role": "user", "content": f"πŸ“‚ Processing file: {os.path.basename(file.name)}"})
    try:
        extracted = extract_text_from_excel(file.name)
        chunks = split_text(extracted)
        batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
        messages.append({"role": "assistant", "content": f"πŸ” Split into {len(batches)} batches. Analyzing..."})

        batch_results = analyze_batches(agent, batches)
        valid = [res for res in batch_results if not res.startswith("❌")]

        if not valid:
            messages.append({"role": "assistant", "content": "❌ No valid batch outputs."})
            return messages, None

        summary = generate_final_summary(agent, "\n\n".join(valid))
        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w', encoding='utf-8') as f:
            f.write(f"# 🧠 Final Medical Report\n\n{summary}")

        messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{summary}"})
        messages.append({"role": "assistant", "content": f"βœ… Report saved: {os.path.basename(report_path)}"})
        return messages, report_path

    except Exception as e:
        messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
        return messages, None

def create_ui(agent):
    with gr.Blocks(css="""
        html, body, .gradio-container {
            background: #0e1621; color: #e0e0e0;
        }
        button.svelte-1ipelgc {
            background: linear-gradient(to right, #1e88e5, #0d47a1) !important;
            border: 1px solid #0d47a1 !important;
            color: white !important;
            font-weight: bold !important;
        }
        button.svelte-1ipelgc:hover {
            background: linear-gradient(to right, #2196f3, #1565c0) !important;
            border: 1px solid #1565c0 !important;
            color: white !important;
        }
    """) as demo:
        gr.Markdown("""
        <h2>πŸ“„ CPS: Clinical Patient Support System</h2>
        <p>Analyze and summarize unstructured medical files using AI (optimized for A100 GPU).</p>
        """)
        with gr.Column():
            chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
            upload = gr.File(label="Upload Medical File", file_types=[".xlsx"])
            analyze = gr.Button("🧠 Analyze")
            download = gr.File(label="Download Report", visible=False, interactive=False)

        state = gr.State(value=[])

        def handle_analysis(file, chat):
            messages, report_path = process_report(agent, file, chat)
            return messages, gr.update(visible=bool(report_path), value=report_path), messages

        analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])
    return demo

# === Main ===
if __name__ == "__main__":
    agent = init_agent()
    ui = create_ui(agent)
    ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)