File size: 8,573 Bytes
f75a23b
f394b25
d184610
0fb33af
f394b25
0fb33af
 
1244d40
d16299c
1c5bd8e
d14630a
d8282f1
abd27cc
f6e551c
 
d16299c
f6e551c
 
 
 
 
abd27cc
 
f6e551c
4bfbcac
0fb33af
f75a23b
abd27cc
1244d40
 
7a8204e
 
 
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
f6e551c
7a8204e
f6e551c
ad85a12
 
e99ba15
 
 
a42578c
 
e99ba15
ad85a12
 
a42578c
e99ba15
 
ad85a12
e99ba15
 
 
 
a42578c
 
e99ba15
ad85a12
e99ba15
 
a42578c
e99ba15
ad85a12
 
 
 
 
28e1ce8
b929a03
ad85a12
 
 
 
 
b929a03
 
 
 
 
 
 
ad85a12
f6e551c
d16299c
e99ba15
 
 
f6e551c
d16299c
 
e99ba15
d16299c
 
 
e99ba15
d16299c
f6e551c
 
d16299c
6eaf941
548e7fb
 
6eaf941
e99ba15
cfe82ea
e99ba15
 
 
 
 
 
 
a42578c
 
 
 
 
e99ba15
 
 
 
 
 
3e386fc
e99ba15
 
 
a808449
e99ba15
 
 
 
 
 
 
6eaf941
e99ba15
 
cfe82ea
e99ba15
 
a42578c
 
 
 
 
e99ba15
 
 
 
 
 
 
 
 
 
ac2fc78
cfe82ea
ac2fc78
 
6eaf941
d14630a
0fb33af
abd27cc
ef6f12c
83aa052
 
e99ba15
a42578c
 
7a8204e
ef6f12c
83aa052
a42578c
 
 
83aa052
 
 
 
ef6f12c
83aa052
 
ef6f12c
83aa052
ef6f12c
83aa052
 
6e4e750
83aa052
ef6f12c
83aa052
6e4e750
83aa052
ef6f12c
83aa052
 
6032958
ac2fc78
 
 
 
 
 
 
abd27cc
83aa052
 
 
7a436df
83aa052
 
 
0fb33af
 
 
6eaf941
ac2fc78
8246b02
ef6f12c
 
 
ac2fc78
ef6f12c
0fb33af
a71a831
55e3db0
abd27cc
d8282f1
d16299c
e41225f
abd27cc
d8282f1
abd27cc
ac2fc78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed

# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    xls = pd.ExcelFile(file_path)
    for sheet_name in xls.sheet_names:
        df = xls.parse(sheet_name).astype(str).fillna("")
        rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
        sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
        all_text.extend(sheet_text)
    return "\n".join(all_text)

def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS, max_chunks: int = 30) -> List[str]:
    effective_max = max_tokens - PROMPT_OVERHEAD
    lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
    for line in lines:
        t = estimate_tokens(line)
        if curr_tokens + t > effective_max:
            if curr_chunk:
                chunks.append("\n".join(curr_chunk))
            if len(chunks) >= max_chunks:
                break
            curr_chunk, curr_tokens = [line], t
        else:
            curr_chunk.append(line)
            curr_tokens += t
    if curr_chunk and len(chunks) < max_chunks:
        chunks.append("\n".join(curr_chunk))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations

---

{chunk}

---
Respond in well-structured bullet points with medical reasoning.
"""

def init_agent():
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

def process_final_report(agent, file, chatbot_state: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], Union[str, None, str]]:
    messages = chatbot_state if chatbot_state else []
    if file is None or not hasattr(file, "name"):
        return messages + [("assistant", "โŒ Please upload a valid Excel file.")], None, ""

    messages.append(("user", f"Processing Excel file: {os.path.basename(file.name)}"))
    text = extract_text_from_excel(file.name)
    chunks = split_text_into_chunks(text)
    chunk_responses = [None] * len(chunks)

    def analyze_chunk(i, chunk):
        prompt = build_prompt_from_text(chunk)
        response = ""
        for res in agent.run_gradio_chat(
            message=prompt, history=[], temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
            call_agent=False, conversation=[]
        ):
            if isinstance(res, str):
                response += res
            elif hasattr(res, "content"):
                response += res.content
            elif isinstance(res, list):
                for r in res:
                    if hasattr(r, "content"):
                        response += r.content
        return i, clean_response(response)

    with ThreadPoolExecutor(max_workers=1) as executor:
        futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
        for f in as_completed(futures):
            i, result = f.result()
            chunk_responses[i] = result

    valid = [r for r in chunk_responses if r and not r.startswith("โŒ")]
    if not valid:
        return messages + [("assistant", "โŒ No valid chunk results.")], None, ""

    summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
    messages.append(("assistant", "๐Ÿ“Š Generating final report..."))

    final_report = ""
    for res in agent.run_gradio_chat(
        message=summary_prompt, history=[], temperature=0.2,
        max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
        call_agent=False, conversation=[]
    ):
        if isinstance(res, str):
            final_report += res
        elif hasattr(res, "content"):
            final_report += res.content

    cleaned = clean_response(final_report)
    report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
    with open(report_path, 'w') as f:
        f.write(f"# ๐Ÿง  Final Patient Report\n\n{cleaned}")

    # Add the report content to the chat messages
    messages.append(("assistant", f"โœ… Report generated and saved: {os.path.basename(report_path)}"))
    messages.append(("assistant", f"## Final Report\n\n{cleaned}"))
    
    return messages, report_path, cleaned

def create_ui(agent):
    with gr.Blocks(css="""
        body {
            background: #10141f;
            color: #ffffff;
            font-family: 'Inter', sans-serif;
            margin: 0;
            padding: 0;
        }
        .gradio-container {
            padding: 30px;
            width: 100vw;
            max-width: 100%;
            border-radius: 0;
            background-color: #1a1f2e;
        }
        .chatbot {
            background-color: #131720;
            border-radius: 12px;
            padding: 20px;
            height: 600px;
            overflow-y: auto;
            border: 1px solid #2c3344;
        }
        .gr-button {
            background: linear-gradient(135deg, #4b4ced, #37b6e9);
            color: white;
            font-weight: 500;
            border: none;
            padding: 10px 20px;
            border-radius: 8px;
            transition: background 0.3s ease;
        }
        .gr-button:hover {
            background: linear-gradient(135deg, #37b6e9, #4b4ced);
        }
        .report-content {
            background-color: #1a1f2e;
            padding: 15px;
            border-radius: 8px;
            margin-top: 10px;
            border: 1px solid #2c3344;
        }
    """) as demo:
        gr.Markdown("""# ๐Ÿง  Clinical Reasoning Assistant
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
""")
        chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot", type="tuples")
        file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
        analyze_btn = gr.Button("Analyze")
        report_output = gr.File(label="Download Report", visible=False)
        chatbot_state = gr.State(value=[])

        def update_ui(file, current_state):
            messages, report_path, final_text = process_final_report(agent, file, current_state)
            return messages, gr.update(visible=report_path is not None, value=report_path), messages

        analyze_btn.click(
            fn=update_ui,
            inputs=[file_upload, chatbot_state],
            outputs=[chatbot, report_output, chatbot_state]
        )

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)