File size: 6,013 Bytes
9ef8abc
5f7a1a1
7323cb6
 
 
5f7a1a1
 
 
 
e24be23
9ef8abc
1da2cfd
5f7a1a1
9ef8abc
1da2cfd
dae38a2
9ef8abc
5f7a1a1
 
 
 
9ef8abc
 
 
c441954
9ef8abc
 
5f7a1a1
 
 
 
 
 
 
9ef8abc
5f7a1a1
 
9ef8abc
 
 
dae38a2
7323cb6
 
 
 
9ef8abc
1da2cfd
 
9ef8abc
 
5f7a1a1
 
1da2cfd
9ef8abc
e24be23
5f7a1a1
dae38a2
9ef8abc
7323cb6
9ef8abc
5f7a1a1
9ef8abc
1da2cfd
9ef8abc
1da2cfd
9ef8abc
 
dae38a2
9ef8abc
 
dae38a2
9ef8abc
dae38a2
9ef8abc
 
7323cb6
dae38a2
7323cb6
5f7a1a1
e24be23
7323cb6
 
9ef8abc
 
 
 
 
5f7a1a1
9ef8abc
 
5f7a1a1
7323cb6
9ef8abc
 
 
 
 
 
 
 
7323cb6
 
5f7a1a1
9ef8abc
 
 
5f7a1a1
9ef8abc
5f7a1a1
 
7323cb6
9ef8abc
 
 
5f7a1a1
 
7323cb6
5f7a1a1
9ef8abc
5f7a1a1
7323cb6
5f7a1a1
7323cb6
 
9ef8abc
7323cb6
 
5f7a1a1
7323cb6
5f7a1a1
9ef8abc
 
 
 
 
7323cb6
9ef8abc
5f7a1a1
9ef8abc
5f7a1a1
7323cb6
9ef8abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f7a1a1
c441954
9ef8abc
 
 
 
 
 
 
 
 
5f7a1a1
9ef8abc
c441954
9ef8abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24be23
 
9ef8abc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys
import os
import gradio as gr
import hashlib
import time
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
import pandas as pd
import pdfplumber

# Set up environment
os.environ.update({
    "HF_HOME": "/data/hf_cache",
    "TOKENIZERS_PARALLELISM": "false"
})

# Create cache directories
os.makedirs("/data/hf_cache", exist_ok=True)
os.makedirs("/data/file_cache", exist_ok=True)
os.makedirs("/data/reports", exist_ok=True)

# Import TxAgent after setting up environment
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

# Initialize agent with error handling
try:
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100
    )
    agent.init_model()
except Exception as e:
    print(f"Failed to initialize agent: {str(e)}")
    agent = None

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_text_from_pdf(file_path: str, max_pages: int = 10) -> str:
    try:
        with pdfplumber.open(file_path) as pdf:
            return "\n".join(
                f"Page {i+1}:\n{(page.extract_text() or '').strip()}\n"
                for i, page in enumerate(pdf.pages[:max_pages])
            )
    except Exception as e:
        return f"PDF error: {str(e)}"

def process_file(file_path: str, file_type: str) -> str:
    try:
        cache_path = f"/data/file_cache/{file_hash(file_path)}.json"
        if os.path.exists(cache_path):
            with open(cache_path, "r") as f:
                return f.read()
                
        if file_type == "pdf":
            content = extract_text_from_pdf(file_path)
        elif file_type == "csv":
            df = pd.read_csv(file_path, header=None, dtype=str, on_bad_lines="skip")
            content = df.fillna("").to_string()
        elif file_type in ["xls", "xlsx"]:
            df = pd.read_excel(file_path, header=None, dtype=str)
            content = df.fillna("").to_string()
        else:
            return json.dumps({"error": "Unsupported file type"})

        result = json.dumps({"filename": os.path.basename(file_path), "content": content})
        with open(cache_path, "w") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": str(e)})

def format_response(response: str) -> str:
    response = response.replace("[TOOL_CALLS]", "").strip()
    sections = {
        "1. **Missed Diagnoses**:": "๐Ÿ” Missed Diagnoses",
        "2. **Medication Conflicts**:": "๐Ÿ’Š Medication Conflicts", 
        "3. **Incomplete Assessments**:": "๐Ÿ“‹ Incomplete Assessments",
        "4. **Abnormal Results Needing Follow-up**:": "โš ๏ธ Abnormal Results"
    }
    for old, new in sections.items():
        response = response.replace(old, f"\n### {new}\n")
    return response

def analyze(message: str, history: list, files: list):
    if agent is None:
        yield history + [(message, "Agent initialization failed. Please try again later.")], None
        return
    
    history.append((message, None))
    yield history, None
    
    try:
        extracted_data = ""
        if files:
            with ThreadPoolExecutor() as executor:
                futures = [executor.submit(process_file, f.name, f.name.split(".")[-1])
                         for f in files if hasattr(f, 'name')]
                extracted_data = "\n".join(f.result() for f in as_completed(futures))
        
        prompt = f"""Review these medical records:
{extracted_data[:10000]}

Identify potential issues:
1. Missed diagnoses
2. Medication conflicts  
3. Incomplete assessments
4. Abnormal results needing follow-up

Analysis:"""
        
        response = ""
        for chunk in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=800
        ):
            if isinstance(chunk, str):
                response += chunk
            elif isinstance(chunk, list):
                response += "".join(getattr(c, 'content', '') for c in chunk)
            
            history[-1] = (message, format_response(response))
            yield history, None
            
        history[-1] = (message, format_response(response))
        yield history, None
        
    except Exception as e:
        history[-1] = (message, f"โŒ Error: {str(e)}")
        yield history, None

# Create the interface
with gr.Blocks(
    title="Clinical Oversight Assistant",
    css="""
    .gradio-container {
        max-width: 1000px;
        margin: auto;
    }
    .chatbot {
        min-height: 500px;
    }
    """
) as demo:
    gr.Markdown("# ๐Ÿฉบ Clinical Oversight Assistant")
    
    with gr.Row():
        with gr.Column(scale=1):
            files = gr.File(
                label="Upload Medical Records",
                file_types=[".pdf", ".csv", ".xlsx"],
                file_count="multiple"
            )
            query = gr.Textbox(
                label="Your Query",
                placeholder="Ask about potential oversights..."
            )
            submit = gr.Button("Analyze", variant="primary")
            
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                label="Analysis Results",
                show_copy_button=True
            )
    
    submit.click(
        analyze,
        inputs=[query, chatbot, files],
        outputs=[chatbot, gr.File(visible=False)]
    )
    query.submit(
        analyze,
        inputs=[query, chatbot, files], 
        outputs=[chatbot, gr.File(visible=False)]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )