File size: 6,013 Bytes
9ef8abc 5f7a1a1 7323cb6 5f7a1a1 e24be23 9ef8abc 1da2cfd 5f7a1a1 9ef8abc 1da2cfd dae38a2 9ef8abc 5f7a1a1 9ef8abc c441954 9ef8abc 5f7a1a1 9ef8abc 5f7a1a1 9ef8abc dae38a2 7323cb6 9ef8abc 1da2cfd 9ef8abc 5f7a1a1 1da2cfd 9ef8abc e24be23 5f7a1a1 dae38a2 9ef8abc 7323cb6 9ef8abc 5f7a1a1 9ef8abc 1da2cfd 9ef8abc 1da2cfd 9ef8abc dae38a2 9ef8abc dae38a2 9ef8abc dae38a2 9ef8abc 7323cb6 dae38a2 7323cb6 5f7a1a1 e24be23 7323cb6 9ef8abc 5f7a1a1 9ef8abc 5f7a1a1 7323cb6 9ef8abc 7323cb6 5f7a1a1 9ef8abc 5f7a1a1 9ef8abc 5f7a1a1 7323cb6 9ef8abc 5f7a1a1 7323cb6 5f7a1a1 9ef8abc 5f7a1a1 7323cb6 5f7a1a1 7323cb6 9ef8abc 7323cb6 5f7a1a1 7323cb6 5f7a1a1 9ef8abc 7323cb6 9ef8abc 5f7a1a1 9ef8abc 5f7a1a1 7323cb6 9ef8abc 5f7a1a1 c441954 9ef8abc 5f7a1a1 9ef8abc c441954 9ef8abc e24be23 9ef8abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import sys
import os
import gradio as gr
import hashlib
import time
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
import pandas as pd
import pdfplumber
# Set up environment
os.environ.update({
"HF_HOME": "/data/hf_cache",
"TOKENIZERS_PARALLELISM": "false"
})
# Create cache directories
os.makedirs("/data/hf_cache", exist_ok=True)
os.makedirs("/data/file_cache", exist_ok=True)
os.makedirs("/data/reports", exist_ok=True)
# Import TxAgent after setting up environment
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent
# Initialize agent with error handling
try:
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100
)
agent.init_model()
except Exception as e:
print(f"Failed to initialize agent: {str(e)}")
agent = None
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_text_from_pdf(file_path: str, max_pages: int = 10) -> str:
try:
with pdfplumber.open(file_path) as pdf:
return "\n".join(
f"Page {i+1}:\n{(page.extract_text() or '').strip()}\n"
for i, page in enumerate(pdf.pages[:max_pages])
)
except Exception as e:
return f"PDF error: {str(e)}"
def process_file(file_path: str, file_type: str) -> str:
try:
cache_path = f"/data/file_cache/{file_hash(file_path)}.json"
if os.path.exists(cache_path):
with open(cache_path, "r") as f:
return f.read()
if file_type == "pdf":
content = extract_text_from_pdf(file_path)
elif file_type == "csv":
df = pd.read_csv(file_path, header=None, dtype=str, on_bad_lines="skip")
content = df.fillna("").to_string()
elif file_type in ["xls", "xlsx"]:
df = pd.read_excel(file_path, header=None, dtype=str)
content = df.fillna("").to_string()
else:
return json.dumps({"error": "Unsupported file type"})
result = json.dumps({"filename": os.path.basename(file_path), "content": content})
with open(cache_path, "w") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": str(e)})
def format_response(response: str) -> str:
response = response.replace("[TOOL_CALLS]", "").strip()
sections = {
"1. **Missed Diagnoses**:": "๐ Missed Diagnoses",
"2. **Medication Conflicts**:": "๐ Medication Conflicts",
"3. **Incomplete Assessments**:": "๐ Incomplete Assessments",
"4. **Abnormal Results Needing Follow-up**:": "โ ๏ธ Abnormal Results"
}
for old, new in sections.items():
response = response.replace(old, f"\n### {new}\n")
return response
def analyze(message: str, history: list, files: list):
if agent is None:
yield history + [(message, "Agent initialization failed. Please try again later.")], None
return
history.append((message, None))
yield history, None
try:
extracted_data = ""
if files:
with ThreadPoolExecutor() as executor:
futures = [executor.submit(process_file, f.name, f.name.split(".")[-1])
for f in files if hasattr(f, 'name')]
extracted_data = "\n".join(f.result() for f in as_completed(futures))
prompt = f"""Review these medical records:
{extracted_data[:10000]}
Identify potential issues:
1. Missed diagnoses
2. Medication conflicts
3. Incomplete assessments
4. Abnormal results needing follow-up
Analysis:"""
response = ""
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=800
):
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join(getattr(c, 'content', '') for c in chunk)
history[-1] = (message, format_response(response))
yield history, None
history[-1] = (message, format_response(response))
yield history, None
except Exception as e:
history[-1] = (message, f"โ Error: {str(e)}")
yield history, None
# Create the interface
with gr.Blocks(
title="Clinical Oversight Assistant",
css="""
.gradio-container {
max-width: 1000px;
margin: auto;
}
.chatbot {
min-height: 500px;
}
"""
) as demo:
gr.Markdown("# ๐ฉบ Clinical Oversight Assistant")
with gr.Row():
with gr.Column(scale=1):
files = gr.File(
label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xlsx"],
file_count="multiple"
)
query = gr.Textbox(
label="Your Query",
placeholder="Ask about potential oversights..."
)
submit = gr.Button("Analyze", variant="primary")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
show_copy_button=True
)
submit.click(
analyze,
inputs=[query, chatbot, files],
outputs=[chatbot, gr.File(visible=False)]
)
query.submit(
analyze,
inputs=[query, chatbot, files],
outputs=[chatbot, gr.File(visible=False)]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |