File size: 14,904 Bytes
f75a23b f394b25 d184610 0fb33af f394b25 0fb33af 1244d40 d16299c 1c5bd8e d16299c d14630a d8282f1 f6e551c d16299c f6e551c 4bfbcac 0fb33af f75a23b d16299c 1244d40 b321961 7a8204e f6e551c d16299c f6e551c d16299c f6e551c d16299c f6e551c 7a8204e f6e551c ad85a12 f260d4a 0fb33af ad85a12 0fb33af ad85a12 b321961 ad85a12 f260d4a 0fb33af 7a8204e f260d4a b321961 ad85a12 f260d4a ad85a12 28e1ce8 ad85a12 0fb33af ad85a12 f6e551c d16299c f6e551c d16299c f6e551c d16299c 34915cc d16299c f6e551c d16299c 0fb33af 548e7fb 6032958 548e7fb d14630a faaf806 548e7fb faaf806 548e7fb faaf806 548e7fb faaf806 6032958 d14630a faaf806 6032958 548e7fb 6032958 548e7fb 6032958 548e7fb 6032958 548e7fb 6032958 548e7fb 6032958 548e7fb d14630a 0fb33af 7a8204e 6032958 b321961 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e 6032958 7a8204e b321961 7a8204e b321961 6032958 b321961 7a8204e 585f453 6032958 585f453 6032958 b321961 89c8dbc 585f453 6032958 0fb33af 7a8204e b321961 6032958 b321961 6032958 0fb33af 7a8204e 0fb33af 6032958 0fb33af a71a831 55e3db0 b321961 d8282f1 d16299c e41225f 6032958 d8282f1 b321961 6032958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
lines = text.split("\n")
chunks, current_chunk, current_tokens = [], [], 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk, current_tokens = [line], line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"π Processing Excel file: {os.path.basename(file.name)}"})
messages.append({"role": "assistant", "content": "π Analyzing clinical data... This may take a moment."})
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text)
chunk_responses = [None] * len(chunks)
def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
return index, f"β Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
except Exception as e:
return index, f"β Error analyzing chunk {index+1}: {str(e)}"
return index, clean_response(response)
# Process chunks silently without displaying progress
with ThreadPoolExecutor(max_workers=1) as executor:
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
for future in as_completed(futures):
i, result = future.result()
chunk_responses[i] = result
valid_responses = [res for res in chunk_responses if not res.startswith("β")]
if not valid_responses:
messages.append({"role": "assistant", "content": "β No valid analysis results to summarize."})
return messages, report_path
summary = "\n\n".join(valid_responses)
final_prompt = f"""Please synthesize the following clinical analyses into a concise, well-structured report:
{summary}
Structure your response with clear sections:
1. Key Diagnostic Patterns
2. Medication Concerns
3. Potential Missed Opportunities
4. Notable Inconsistencies
5. Recommended Follow-ups
Use bullet points for clarity and professional medical terminology."""
final_report_text = ""
try:
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif hasattr(result, "content"):
final_report_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error generating final report: {str(e)}"})
return messages, report_path
final_report = f"# π§ Clinical Analysis Report\n\n{clean_response(final_report_text)}"
# Update the last message with the final report
messages[-1]["content"] = f"## π Clinical Analysis Report\n\n{clean_response(final_report_text)}"
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"clinical_report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"β
Report generated successfully. You can download it below."})
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
return messages, report_path
def create_ui(agent):
with gr.Blocks(
title="Clinical Analysis Tool",
css="""
.gradio-container {
max-width: 900px !important;
margin: auto;
font-family: 'Inter', sans-serif;
background-color: #f9fafb;
}
.gr-button.primary {
background: linear-gradient(to right, #4f46e5, #7c3aed);
color: white;
border: none;
border-radius: 8px;
padding: 12px 24px;
font-weight: 500;
transition: all 0.2s;
}
.gr-button.primary:hover {
background: linear-gradient(to right, #4338ca, #6d28d9);
transform: translateY(-1px);
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.gr-file-upload, .gr-chatbot, .gr-markdown {
background-color: white;
border-radius: 12px;
box-shadow: 0 1px 3px rgba(0,0,0,0.05);
padding: 1.5rem;
border: 1px solid #e5e7eb;
}
.gr-chatbot {
min-height: 600px;
border-left: none;
}
.chat-message-user {
background-color: #f3f4f6;
border-radius: 12px;
padding: 12px 16px;
margin: 8px 0;
}
.chat-message-assistant {
background-color: white;
border-radius: 12px;
padding: 12px 16px;
margin: 8px 0;
border: 1px solid #e5e7eb;
}
.chat-message-content ul, .chat-message-content ol {
padding-left: 1.5em;
margin: 0.5em 0;
}
.chat-message-content li {
margin: 0.3em 0;
}
h1, h2, h3 {
color: #111827;
}
.gr-markdown h1 {
font-size: 1.8rem;
margin-bottom: 1rem;
font-weight: 600;
}
.gr-markdown p {
color: #4b5563;
line-height: 1.6;
}
.progress-bar {
height: 4px;
background: #e5e7eb;
border-radius: 2px;
margin: 12px 0;
overflow: hidden;
}
.progress-bar-fill {
height: 100%;
background: linear-gradient(to right, #4f46e5, #7c3aed);
transition: width 0.3s ease;
}
"""
) as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 1.5rem;'>
<h1 style='margin-bottom: 0.5rem; color: #111827;'>Clinical Documentation Analyzer</h1>
<p style='color: #6b7280; margin-top: 0;'>Upload patient records in Excel format for comprehensive clinical analysis</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Analysis Results",
show_copy_button=True,
height=600,
bubble_full_width=False,
avatar_images=(None, "https://i.imgur.com/6wX7Zb4.png"),
render_markdown=True
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Patient Records",
file_types=[".xlsx", ".xls"],
height=100,
interactive=True
)
analyze_btn = gr.Button(
"Analyze Clinical Data",
variant="primary",
elem_classes="primary"
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False
)
gr.Markdown("""
<div style='margin-top: 1rem; padding: 1rem; background-color: #f8fafc; border-radius: 8px;'>
<h3 style='margin-top: 0; margin-bottom: 0.5rem; font-size: 1rem;'>About this tool</h3>
<p style='margin: 0; font-size: 0.9rem; color: #64748b;'>
This tool analyzes clinical documentation to identify patterns, inconsistencies, and opportunities for improved patient care.
</p>
</div>
""")
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
formatted_messages = []
for msg in messages:
role = msg.get("role")
content = msg.get("content", "")
if role == "assistant":
# Format lists and sections for better readability
content = content.replace("- ", "β’ ")
content = re.sub(r"(\d+\.\s)", r"\n\1", content)
content = f"<div class='chat-message-assistant'>{content}</div>"
else:
content = f"<div class='chat-message-user'>{content}</div>"
formatted_messages.append({"role": role, "content": content})
report_update = gr.update(visible=report_path is not None, value=report_path)
return formatted_messages, report_update, formatted_messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"],
share=False
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1) |