File size: 14,904 Bytes
f75a23b
f394b25
d184610
0fb33af
f394b25
0fb33af
 
1244d40
d16299c
1c5bd8e
d16299c
d14630a
d8282f1
f6e551c
 
 
d16299c
f6e551c
 
 
 
 
 
 
 
4bfbcac
0fb33af
f75a23b
d16299c
 
 
1244d40
 
 
b321961
7a8204e
 
 
 
f6e551c
d16299c
f6e551c
 
 
 
d16299c
 
f6e551c
d16299c
 
f6e551c
7a8204e
f6e551c
ad85a12
 
f260d4a
 
 
 
 
 
 
 
 
0fb33af
ad85a12
 
0fb33af
 
 
 
ad85a12
b321961
ad85a12
f260d4a
0fb33af
7a8204e
f260d4a
b321961
ad85a12
 
f260d4a
ad85a12
 
 
 
 
 
 
28e1ce8
ad85a12
 
 
 
 
 
 
 
0fb33af
ad85a12
 
 
 
 
 
f6e551c
d16299c
f6e551c
 
 
 
 
d16299c
 
f6e551c
d16299c
 
 
 
34915cc
d16299c
f6e551c
 
d16299c
0fb33af
548e7fb
 
 
 
 
 
 
 
6032958
 
 
548e7fb
d14630a
faaf806
548e7fb
faaf806
548e7fb
 
 
faaf806
548e7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faaf806
 
 
6032958
d14630a
faaf806
 
 
 
 
 
 
6032958
548e7fb
 
6032958
 
 
 
 
 
 
 
 
 
 
548e7fb
6032958
 
548e7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6032958
 
 
 
548e7fb
 
6032958
548e7fb
 
 
 
6032958
548e7fb
 
 
 
 
d14630a
0fb33af
7a8204e
6032958
b321961
7a8204e
 
 
6032958
 
7a8204e
 
6032958
7a8204e
 
 
6032958
 
 
7a8204e
 
6032958
 
 
7a8204e
 
 
6032958
 
 
 
7a8204e
 
6032958
 
7a8204e
6032958
 
 
 
 
 
 
 
 
 
 
 
7a8204e
6032958
 
 
 
 
7a8204e
 
6032958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8204e
b321961
7a8204e
b321961
6032958
 
 
 
b321961
7a8204e
585f453
 
 
6032958
585f453
 
6032958
b321961
89c8dbc
585f453
 
6032958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb33af
 
 
 
 
7a8204e
 
b321961
 
 
6032958
 
 
 
 
 
b321961
6032958
0fb33af
7a8204e
0fb33af
6032958
 
 
 
 
 
0fb33af
a71a831
55e3db0
b321961
d8282f1
d16299c
e41225f
6032958
 
 
 
 
 
 
d8282f1
b321961
6032958
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
from concurrent.futures import ThreadPoolExecutor, as_completed

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    try:
        xls = pd.ExcelFile(file_path)
        for sheet_name in xls.sheet_names:
            df = xls.parse(sheet_name)
            df = df.astype(str).fillna("")
            rows = df.apply(lambda row: " | ".join(row), axis=1)
            sheet_text = [f"[{sheet_name}] {line}" for line in rows]
            all_text.extend(sheet_text)
    except Exception as e:
        raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
    return "\n".join(all_text)

def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
    effective_max_tokens = max_tokens - PROMPT_OVERHEAD
    if effective_max_tokens <= 0:
        raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
    lines = text.split("\n")
    chunks, current_chunk, current_tokens = [], [], 0
    for line in lines:
        line_tokens = estimate_tokens(line)
        if current_tokens + line_tokens > effective_max_tokens:
            if current_chunk:
                chunks.append("\n".join(current_chunk))
            current_chunk, current_tokens = [line], line_tokens
        else:
            current_chunk.append(line)
            current_tokens += line_tokens
    if current_chunk:
        chunks.append("\n".join(current_chunk))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.

**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.

Here is the extracted content chunk:

{chunk}

Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[]
    )
    agent.init_model()
    return agent

def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
    messages = chatbot_state if chatbot_state else []
    report_path = None

    if file is None or not hasattr(file, "name"):
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
        return messages, report_path

    try:
        messages.append({"role": "user", "content": f"πŸ“„ Processing Excel file: {os.path.basename(file.name)}"})
        messages.append({"role": "assistant", "content": "πŸ” Analyzing clinical data... This may take a moment."})
        
        extracted_text = extract_text_from_excel(file.name)
        chunks = split_text_into_chunks(extracted_text)
        chunk_responses = [None] * len(chunks)

        def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
            prompt = build_prompt_from_text(chunk)
            prompt_tokens = estimate_tokens(prompt)
            if prompt_tokens > MAX_MODEL_TOKENS:
                return index, f"❌ Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
            response = ""
            try:
                for result in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=MAX_NEW_TOKENS,
                    max_token=MAX_MODEL_TOKENS,
                    call_agent=False,
                    conversation=[],
                ):
                    if isinstance(result, str):
                        response += result
                    elif hasattr(result, "content"):
                        response += result.content
                    elif isinstance(result, list):
                        for r in result:
                            if hasattr(r, "content"):
                                response += r.content
            except Exception as e:
                return index, f"❌ Error analyzing chunk {index+1}: {str(e)}"
            return index, clean_response(response)

        # Process chunks silently without displaying progress
        with ThreadPoolExecutor(max_workers=1) as executor:
            futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
            for future in as_completed(futures):
                i, result = future.result()
                chunk_responses[i] = result

        valid_responses = [res for res in chunk_responses if not res.startswith("❌")]
        if not valid_responses:
            messages.append({"role": "assistant", "content": "❌ No valid analysis results to summarize."})
            return messages, report_path

        summary = "\n\n".join(valid_responses)
        final_prompt = f"""Please synthesize the following clinical analyses into a concise, well-structured report:
        
{summary}

Structure your response with clear sections:
1. Key Diagnostic Patterns
2. Medication Concerns
3. Potential Missed Opportunities
4. Notable Inconsistencies
5. Recommended Follow-ups

Use bullet points for clarity and professional medical terminology."""
        
        final_report_text = ""
        try:
            for result in agent.run_gradio_chat(
                message=final_prompt,
                history=[],
                temperature=0.2,
                max_new_tokens=MAX_NEW_TOKENS,
                max_token=MAX_MODEL_TOKENS,
                call_agent=False,
                conversation=[],
            ):
                if isinstance(result, str):
                    final_report_text += result
                elif hasattr(result, "content"):
                    final_report_text += result.content
                elif isinstance(result, list):
                    for r in result:
                        if hasattr(r, "content"):
                            final_report_text += r.content
        except Exception as e:
            messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"})
            return messages, report_path

        final_report = f"# 🧠 Clinical Analysis Report\n\n{clean_response(final_report_text)}"
        
        # Update the last message with the final report
        messages[-1]["content"] = f"## πŸ“‹ Clinical Analysis Report\n\n{clean_response(final_report_text)}"

        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        report_path = os.path.join(report_dir, f"clinical_report_{timestamp}.md")

        with open(report_path, 'w') as f:
            f.write(final_report)

        messages.append({"role": "assistant", "content": f"βœ… Report generated successfully. You can download it below."})

    except Exception as e:
        messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})

    return messages, report_path

def create_ui(agent):
    with gr.Blocks(
        title="Clinical Analysis Tool",
        css="""
        .gradio-container {
            max-width: 900px !important;
            margin: auto;
            font-family: 'Inter', sans-serif;
            background-color: #f9fafb;
        }
        .gr-button.primary {
            background: linear-gradient(to right, #4f46e5, #7c3aed);
            color: white;
            border: none;
            border-radius: 8px;
            padding: 12px 24px;
            font-weight: 500;
            transition: all 0.2s;
        }
        .gr-button.primary:hover {
            background: linear-gradient(to right, #4338ca, #6d28d9);
            transform: translateY(-1px);
            box-shadow: 0 4px 6px rgba(0,0,0,0.1);
        }
        .gr-file-upload, .gr-chatbot, .gr-markdown {
            background-color: white;
            border-radius: 12px;
            box-shadow: 0 1px 3px rgba(0,0,0,0.05);
            padding: 1.5rem;
            border: 1px solid #e5e7eb;
        }
        .gr-chatbot {
            min-height: 600px;
            border-left: none;
        }
        .chat-message-user {
            background-color: #f3f4f6;
            border-radius: 12px;
            padding: 12px 16px;
            margin: 8px 0;
        }
        .chat-message-assistant {
            background-color: white;
            border-radius: 12px;
            padding: 12px 16px;
            margin: 8px 0;
            border: 1px solid #e5e7eb;
        }
        .chat-message-content ul, .chat-message-content ol {
            padding-left: 1.5em;
            margin: 0.5em 0;
        }
        .chat-message-content li {
            margin: 0.3em 0;
        }
        h1, h2, h3 {
            color: #111827;
        }
        .gr-markdown h1 {
            font-size: 1.8rem;
            margin-bottom: 1rem;
            font-weight: 600;
        }
        .gr-markdown p {
            color: #4b5563;
            line-height: 1.6;
        }
        .progress-bar {
            height: 4px;
            background: #e5e7eb;
            border-radius: 2px;
            margin: 12px 0;
            overflow: hidden;
        }
        .progress-bar-fill {
            height: 100%;
            background: linear-gradient(to right, #4f46e5, #7c3aed);
            transition: width 0.3s ease;
        }
        """
    ) as demo:
        gr.Markdown("""
        <div style='text-align: center; margin-bottom: 1.5rem;'>
            <h1 style='margin-bottom: 0.5rem; color: #111827;'>Clinical Documentation Analyzer</h1>
            <p style='color: #6b7280; margin-top: 0;'>Upload patient records in Excel format for comprehensive clinical analysis</p>
        </div>
        """)

        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Analysis Results",
                    show_copy_button=True,
                    height=600,
                    bubble_full_width=False,
                    avatar_images=(None, "https://i.imgur.com/6wX7Zb4.png"),
                    render_markdown=True
                )
            with gr.Column(scale=1):
                file_upload = gr.File(
                    label="Upload Patient Records",
                    file_types=[".xlsx", ".xls"],
                    height=100,
                    interactive=True
                )
                analyze_btn = gr.Button(
                    "Analyze Clinical Data",
                    variant="primary",
                    elem_classes="primary"
                )
                report_output = gr.File(
                    label="Download Report",
                    visible=False,
                    interactive=False
                )
                gr.Markdown("""
                <div style='margin-top: 1rem; padding: 1rem; background-color: #f8fafc; border-radius: 8px;'>
                    <h3 style='margin-top: 0; margin-bottom: 0.5rem; font-size: 1rem;'>About this tool</h3>
                    <p style='margin: 0; font-size: 0.9rem; color: #64748b;'>
                        This tool analyzes clinical documentation to identify patterns, inconsistencies, and opportunities for improved patient care.
                    </p>
                </div>
                """)

        chatbot_state = gr.State(value=[])

        def update_ui(file, current_state):
            messages, report_path = process_final_report(agent, file, current_state)
            formatted_messages = []
            for msg in messages:
                role = msg.get("role")
                content = msg.get("content", "")
                if role == "assistant":
                    # Format lists and sections for better readability
                    content = content.replace("- ", "β€’ ")
                    content = re.sub(r"(\d+\.\s)", r"\n\1", content)
                    content = f"<div class='chat-message-assistant'>{content}</div>"
                else:
                    content = f"<div class='chat-message-user'>{content}</div>"
                formatted_messages.append({"role": role, "content": content})
            
            report_update = gr.update(visible=report_path is not None, value=report_path)
            return formatted_messages, report_update, formatted_messages

        analyze_btn.click(
            fn=update_ui,
            inputs=[file_upload, chatbot_state],
            outputs=[chatbot, report_output, chatbot_state],
            api_name="analyze"
        )

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=["/data/hf_cache/reports"],
            share=False
        )
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)