File size: 8,567 Bytes
833a580
dae38a2
1da2cfd
dae38a2
1fa1ea5
e24be23
1fa1ea5
e24be23
 
 
 
 
 
65a2e99
f05e804
dae38a2
65a2e99
 
e24be23
1fa1ea5
1da2cfd
 
1fa1ea5
f05e804
1da2cfd
 
 
dae38a2
 
 
1fa1ea5
 
dae38a2
1fa1ea5
 
dae38a2
1fa1ea5
1da2cfd
 
1fa1ea5
1da2cfd
1fa1ea5
1da2cfd
1fa1ea5
 
 
 
1da2cfd
 
e24be23
1fa1ea5
dae38a2
 
e24be23
1fa1ea5
dae38a2
1da2cfd
 
1ebbef1
1da2cfd
 
722c891
1fa1ea5
dae38a2
 
 
 
 
1fa1ea5
dae38a2
 
 
1fa1ea5
dae38a2
 
1da2cfd
 
1fa1ea5
1da2cfd
1fa1ea5
 
1da2cfd
722c891
1ebbef1
1fa1ea5
 
1da2cfd
1fa1ea5
e24be23
 
 
 
 
 
 
 
1da2cfd
 
e24be23
 
 
 
1fa1ea5
e24be23
 
 
 
1fa1ea5
 
 
 
 
 
 
 
d14e134
1fa1ea5
d14e134
 
1fa1ea5
 
d14e134
1fa1ea5
 
d14e134
1fa1ea5
d14e134
1fa1ea5
 
 
 
d14e134
1fa1ea5
d14e134
65a2e99
1da2cfd
 
 
 
 
1ebbef1
1da2cfd
e0fba37
b90a0eb
1fa1ea5
 
65a2e99
d14e134
 
 
 
 
 
 
 
1fa1ea5
d14e134
1fa1ea5
d14e134
1fa1ea5
65a2e99
1fa1ea5
89e3b93
1fa1ea5
d14e134
1fa1ea5
89e3b93
d14e134
1fa1ea5
89e3b93
dae38a2
1fa1ea5
 
1bb8be7
dae38a2
e24be23
 
 
1fa1ea5
 
e24be23
 
 
e778114
 
d14e134
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#import sys, os, json, gradio as gr, pandas as pd, pdfplumber, hashlib, shutil, re, time
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread

# Setup
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.join(current_dir, "src")
sys.path.insert(0, src_path)

base_dir = "/data"
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
report_dir = os.path.join(base_dir, "reports")
vllm_cache_dir = os.path.join(base_dir, "vllm_cache")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(d, exist_ok=True)

# Hugging Face & Transformers cache
os.environ.update({
    "HF_HOME": model_cache_dir,
    "TRANSFORMERS_CACHE": model_cache_dir,
    "VLLM_CACHE_DIR": vllm_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text): return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path): return hashlib.md5(open(path, "rb").read()).hexdigest()

def extract_priority_pages(file_path, max_pages=20):
    try:
        with pdfplumber.open(file_path) as pdf:
            pages = []
            for i, page in enumerate(pdf.pages[:3]):
                pages.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', text.lower()) for kw in MEDICAL_KEYWORDS):
                    pages.append(f"=== Page {i} ===\n{text.strip()}")
            return "\n\n".join(pages)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path, file_type):
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path): return open(cache_path, "r", encoding="utf-8").read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
            Thread(target=full_pdf_processing, args=(file_path, h)).start()
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
            result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").astype(str).values.tolist()})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").astype(str).values.tolist()})
        else:
            return json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f: f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def full_pdf_processing(file_path, file_hash_value):
    try:
        cache_path = os.path.join(file_cache_dir, f"{file_hash_value}_full.json")
        if os.path.exists(cache_path): return
        with pdfplumber.open(file_path) as pdf:
            full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
        result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
        with open(cache_path, "w", encoding="utf-8") as f: f.write(result)
        with open(os.path.join(report_dir, f"{file_hash_value}_report.txt"), "w", encoding="utf-8") as out: out.write(full_text)
    except Exception as e:
        print("PDF processing error:", e)

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100
    )
    agent.init_model()
    return agent

# Lazy load agent only on first use
agent_container = {"agent": None}
def get_agent():
    if agent_container["agent"] is None:
        agent_container["agent"] = init_agent()
    return agent_container["agent"]

def create_ui(get_agent_func):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1><h3 style='text-align: center;'>Identify potential oversights in patient care</h3>")

        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
        send_btn = gr.Button("Analyze", variant="primary")
        state = gr.State([])
        download_output = gr.File(label="Download Report")

        def analyze(message, history, conversation, files):
            try:
                extracted_data, file_hash_value = "", ""
                if files:
                    with ThreadPoolExecutor(max_workers=4) as pool:
                        futures = [pool.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                        extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
                        file_hash_value = file_hash(files[0].name)

                prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:\n{extracted_data[:15000]}

### Potential Oversights:\n"""

                final_response = ""
                for chunk in get_agent_func().run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=1024,
                    max_token=4096,
                    call_agent=False,
                    conversation=conversation
                ):
                    if isinstance(chunk, str):
                        final_response += chunk
                    elif isinstance(chunk, list):
                        final_response += "".join([c.content for c in chunk if hasattr(c, "content")])

                cleaned = final_response.replace("[TOOL_CALLS]", "").strip()
                if not cleaned:
                    cleaned = "No oversights found. Consider further review."

                updated_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": cleaned}]

                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value and os.path.exists(os.path.join(report_dir, f"{file_hash_value}_report.txt")) else None
                yield updated_history, report_path
            except Exception as e:
                updated_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"❌ Error: {str(e)}"}]
                yield updated_history, None

        send_btn.click(analyze, inputs=[msg_input, chatbot, state, file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, chatbot, state, file_upload], outputs=[chatbot, download_output])

    return demo

if __name__ == "__main__":
    print("Launching interface...")
    ui = create_ui(get_agent)
    ui.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=["/data/reports"],
        share=False
    )