Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -1,21 +1,10 @@ 
     | 
|
| 1 | 
         
            -
             
     | 
| 2 | 
         
            -
            import os
         
     | 
| 3 | 
         
            -
            import pandas as pd
         
     | 
| 4 | 
         
            -
            import pdfplumber
         
     | 
| 5 | 
         
            -
            import json
         
     | 
| 6 | 
         
            -
            import gradio as gr
         
     | 
| 7 | 
         
            -
            from typing import List
         
     | 
| 8 | 
         
             
            from concurrent.futures import ThreadPoolExecutor, as_completed
         
     | 
| 9 | 
         
            -
            import hashlib
         
     | 
| 10 | 
         
            -
            import shutil
         
     | 
| 11 | 
         
            -
            import time
         
     | 
| 12 | 
         
             
            from threading import Thread
         
     | 
| 13 | 
         
            -
            import re
         
     | 
| 14 | 
         
            -
            import tempfile
         
     | 
| 15 | 
         | 
| 16 | 
         
            -
            # Setup 
     | 
| 17 | 
         
             
            current_dir = os.path.dirname(os.path.abspath(__file__))
         
     | 
| 18 | 
         
            -
            src_path = os.path. 
     | 
| 19 | 
         
             
            sys.path.insert(0, src_path)
         
     | 
| 20 | 
         | 
| 21 | 
         
             
            base_dir = "/data"
         
     | 
| 
         @@ -28,9 +17,10 @@ vllm_cache_dir = os.path.join(base_dir, "vllm_cache") 
     | 
|
| 28 | 
         
             
            for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
         
     | 
| 29 | 
         
             
                os.makedirs(d, exist_ok=True)
         
     | 
| 30 | 
         | 
| 
         | 
|
| 31 | 
         
             
            os.environ.update({
         
     | 
| 32 | 
         
            -
                "TRANSFORMERS_CACHE": model_cache_dir,
         
     | 
| 33 | 
         
             
                "HF_HOME": model_cache_dir,
         
     | 
| 
         | 
|
| 34 | 
         
             
                "VLLM_CACHE_DIR": vllm_cache_dir,
         
     | 
| 35 | 
         
             
                "TOKENIZERS_PARALLELISM": "false",
         
     | 
| 36 | 
         
             
                "CUDA_LAUNCH_BLOCKING": "1"
         
     | 
| 
         @@ -38,38 +28,31 @@ os.environ.update({ 
     | 
|
| 38 | 
         | 
| 39 | 
         
             
            from txagent.txagent import TxAgent
         
     | 
| 40 | 
         | 
| 41 | 
         
            -
            MEDICAL_KEYWORDS = {
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
                'allergies', 'summary', 'impression', 'findings', 'recommendations'
         
     | 
| 44 | 
         
            -
            }
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            def sanitize_utf8(text: str) -> str:
         
     | 
| 47 | 
         
            -
                return text.encode("utf-8", "ignore").decode("utf-8")
         
     | 
| 48 | 
         | 
| 49 | 
         
            -
            def  
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                    return hashlib.md5(f.read()).hexdigest()
         
     | 
| 52 | 
         | 
| 53 | 
         
            -
            def extract_priority_pages(file_path 
     | 
| 54 | 
         
             
                try:
         
     | 
| 55 | 
         
            -
                    text_chunks = []
         
     | 
| 56 | 
         
             
                    with pdfplumber.open(file_path) as pdf:
         
     | 
| 
         | 
|
| 57 | 
         
             
                        for i, page in enumerate(pdf.pages[:3]):
         
     | 
| 58 | 
         
            -
                             
     | 
| 59 | 
         
             
                        for i, page in enumerate(pdf.pages[3:max_pages], start=4):
         
     | 
| 60 | 
         
            -
                             
     | 
| 61 | 
         
            -
                            if any(re.search(rf'\b{kw}\b',  
     | 
| 62 | 
         
            -
                                 
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
             
                except Exception as e:
         
     | 
| 65 | 
         
             
                    return f"PDF processing error: {str(e)}"
         
     | 
| 66 | 
         | 
| 67 | 
         
            -
            def convert_file_to_json(file_path 
     | 
| 68 | 
         
             
                try:
         
     | 
| 69 | 
         
             
                    h = file_hash(file_path)
         
     | 
| 70 | 
         
             
                    cache_path = os.path.join(file_cache_dir, f"{h}.json")
         
     | 
| 71 | 
         
            -
                    if os.path.exists(cache_path):
         
     | 
| 72 | 
         
            -
                        return open(cache_path, "r", encoding="utf-8").read()
         
     | 
| 73 | 
         | 
| 74 | 
         
             
                    if file_type == "pdf":
         
     | 
| 75 | 
         
             
                        text = extract_priority_pages(file_path)
         
     | 
| 
         @@ -77,39 +60,32 @@ def convert_file_to_json(file_path: str, file_type: str) -> str: 
     | 
|
| 77 | 
         
             
                        Thread(target=full_pdf_processing, args=(file_path, h)).start()
         
     | 
| 78 | 
         
             
                    elif file_type == "csv":
         
     | 
| 79 | 
         
             
                        df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
         
     | 
| 80 | 
         
            -
                         
     | 
| 81 | 
         
            -
                        result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
         
     | 
| 82 | 
         
             
                    elif file_type in ["xls", "xlsx"]:
         
     | 
| 83 | 
         
             
                        try:
         
     | 
| 84 | 
         
             
                            df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
         
     | 
| 85 | 
         
             
                        except:
         
     | 
| 86 | 
         
             
                            df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
         
     | 
| 87 | 
         
            -
                         
     | 
| 88 | 
         
            -
                        result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
         
     | 
| 89 | 
         
             
                    else:
         
     | 
| 90 | 
         
             
                        return json.dumps({"error": f"Unsupported file type: {file_type}"})
         
     | 
| 91 | 
         | 
| 92 | 
         
            -
                    with open(cache_path, "w", encoding="utf-8") as f:
         
     | 
| 93 | 
         
            -
                        f.write(result)
         
     | 
| 94 | 
         
             
                    return result
         
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
             
                except Exception as e:
         
     | 
| 97 | 
         
             
                    return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
         
     | 
| 98 | 
         | 
| 99 | 
         
            -
            def full_pdf_processing(file_path 
     | 
| 100 | 
         
             
                try:
         
     | 
| 101 | 
         
            -
                    cache_path = os.path.join(file_cache_dir, f"{ 
     | 
| 102 | 
         
            -
                    if os.path.exists(cache_path):
         
     | 
| 103 | 
         
            -
                        return
         
     | 
| 104 | 
         
             
                    with pdfplumber.open(file_path) as pdf:
         
     | 
| 105 | 
         
             
                        full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
         
     | 
| 106 | 
         
             
                    result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
         
     | 
| 107 | 
         
            -
                    with open(cache_path, "w", encoding="utf-8") as f:
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                    with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out:
         
     | 
| 110 | 
         
            -
                        out.write(full_text)
         
     | 
| 111 | 
         
             
                except Exception as e:
         
     | 
| 112 | 
         
            -
                    print( 
     | 
| 113 | 
         | 
| 114 | 
         
             
            def init_agent():
         
     | 
| 115 | 
         
             
                default_tool_path = os.path.abspath("data/new_tool.json")
         
     | 
| 
         @@ -124,36 +100,37 @@ def init_agent(): 
     | 
|
| 124 | 
         
             
                    force_finish=True,
         
     | 
| 125 | 
         
             
                    enable_checker=True,
         
     | 
| 126 | 
         
             
                    step_rag_num=8,
         
     | 
| 127 | 
         
            -
                    seed=100 
     | 
| 128 | 
         
            -
                    additional_default_tools=[],
         
     | 
| 129 | 
         
             
                )
         
     | 
| 130 | 
         
             
                agent.init_model()
         
     | 
| 131 | 
         
             
                return agent
         
     | 
| 132 | 
         | 
| 133 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 134 | 
         
             
                with gr.Blocks(theme=gr.themes.Soft()) as demo:
         
     | 
| 135 | 
         
            -
                    gr.Markdown("" 
     | 
| 136 | 
         
            -
                    <h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
         
     | 
| 137 | 
         
            -
                    <h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
         
     | 
| 138 | 
         
            -
                    """)
         
     | 
| 139 | 
         | 
| 140 | 
         
             
                    chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
         
     | 
| 141 | 
         
            -
                    file_upload = gr.File( 
     | 
| 142 | 
         
            -
                    msg_input = gr.Textbox(placeholder="Ask about potential oversights..." 
     | 
| 143 | 
         
             
                    send_btn = gr.Button("Analyze", variant="primary")
         
     | 
| 144 | 
         
            -
                     
     | 
| 145 | 
         
            -
                    download_output = gr.File(label="Download  
     | 
| 146 | 
         | 
| 147 | 
         
            -
                    def  
     | 
| 148 | 
         
             
                        try:
         
     | 
| 149 | 
         
            -
                            extracted_data = ""
         
     | 
| 150 | 
         
            -
                             
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
                                with ThreadPoolExecutor(max_workers=4) as executor:
         
     | 
| 154 | 
         
            -
                                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files if hasattr(f, 'name')]
         
     | 
| 155 | 
         
             
                                    extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
         
     | 
| 156 | 
         
            -
                                    file_hash_value = file_hash(files[0].name) 
     | 
| 157 | 
         | 
| 158 | 
         
             
                            prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
         
     | 
| 159 | 
         
             
            1. List potential missed diagnoses
         
     | 
| 
         @@ -165,8 +142,8 @@ Medical Records:\n{extracted_data[:15000]} 
     | 
|
| 165 | 
         | 
| 166 | 
         
             
            ### Potential Oversights:\n"""
         
     | 
| 167 | 
         | 
| 168 | 
         
            -
                             
     | 
| 169 | 
         
            -
                            for chunk in  
     | 
| 170 | 
         
             
                                message=prompt,
         
     | 
| 171 | 
         
             
                                history=[],
         
     | 
| 172 | 
         
             
                                temperature=0.2,
         
     | 
| 
         @@ -176,52 +153,31 @@ Medical Records:\n{extracted_data[:15000]} 
     | 
|
| 176 | 
         
             
                                conversation=conversation
         
     | 
| 177 | 
         
             
                            ):
         
     | 
| 178 | 
         
             
                                if isinstance(chunk, str):
         
     | 
| 179 | 
         
            -
                                     
     | 
| 180 | 
         
             
                                elif isinstance(chunk, list):
         
     | 
| 181 | 
         
            -
                                     
     | 
| 182 | 
         | 
| 183 | 
         
            -
                            cleaned =  
     | 
| 184 | 
         
             
                            if not cleaned:
         
     | 
| 185 | 
         
            -
                                cleaned = "No  
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
                            updated_history = history + [
         
     | 
| 188 | 
         
            -
                                {"role": "user", "content": message},
         
     | 
| 189 | 
         
            -
                                {"role": "assistant", "content": cleaned}
         
     | 
| 190 | 
         
            -
                            ]
         
     | 
| 191 | 
         | 
| 192 | 
         
            -
                             
     | 
| 193 | 
         
            -
                            if file_hash_value:
         
     | 
| 194 | 
         
            -
                                possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
         
     | 
| 195 | 
         
            -
                                if os.path.exists(possible_report):
         
     | 
| 196 | 
         
            -
                                    report_path = possible_report
         
     | 
| 197 | 
         | 
| 
         | 
|
| 198 | 
         
             
                            yield updated_history, report_path
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
             
                        except Exception as e:
         
     | 
| 201 | 
         
            -
                            updated_history = history + [{"role": "user", "content": message},
         
     | 
| 202 | 
         
            -
                                                         {"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"}]
         
     | 
| 203 | 
         
             
                            yield updated_history, None
         
     | 
| 204 | 
         | 
| 205 | 
         
            -
                    inputs 
     | 
| 206 | 
         
            -
                     
     | 
| 207 | 
         
            -
                    send_btn.click(analyze_potential_oversights, inputs=inputs, outputs=outputs)
         
     | 
| 208 | 
         
            -
                    msg_input.submit(analyze_potential_oversights, inputs=inputs, outputs=outputs)
         
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
                    gr.Examples([
         
     | 
| 211 | 
         
            -
                        ["What might have been missed in this patient's treatment?"],
         
     | 
| 212 | 
         
            -
                        ["Are there any medication conflicts in these records?"],
         
     | 
| 213 | 
         
            -
                        ["What abnormal results require follow-up?"]
         
     | 
| 214 | 
         
            -
                    ], inputs=msg_input)
         
     | 
| 215 | 
         | 
| 216 | 
         
             
                return demo
         
     | 
| 217 | 
         | 
| 218 | 
         
             
            if __name__ == "__main__":
         
     | 
| 219 | 
         
            -
                print("Initializing medical analysis agent...")
         
     | 
| 220 | 
         
            -
                agent = init_agent()
         
     | 
| 221 | 
         
            -
             
     | 
| 222 | 
         
             
                print("Launching interface...")
         
     | 
| 223 | 
         
            -
                 
     | 
| 224 | 
         
            -
                 
     | 
| 225 | 
         
             
                    server_name="0.0.0.0",
         
     | 
| 226 | 
         
             
                    server_port=7860,
         
     | 
| 227 | 
         
             
                    show_error=True,
         
     | 
| 
         | 
|
| 1 | 
         
            +
            import sys, os, json, gradio as gr, pandas as pd, pdfplumber, hashlib, shutil, re, time
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2 | 
         
             
            from concurrent.futures import ThreadPoolExecutor, as_completed
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 3 | 
         
             
            from threading import Thread
         
     | 
| 
         | 
|
| 
         | 
|
| 4 | 
         | 
| 5 | 
         
            +
            # Setup
         
     | 
| 6 | 
         
             
            current_dir = os.path.dirname(os.path.abspath(__file__))
         
     | 
| 7 | 
         
            +
            src_path = os.path.join(current_dir, "src")
         
     | 
| 8 | 
         
             
            sys.path.insert(0, src_path)
         
     | 
| 9 | 
         | 
| 10 | 
         
             
            base_dir = "/data"
         
     | 
| 
         | 
|
| 17 | 
         
             
            for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
         
     | 
| 18 | 
         
             
                os.makedirs(d, exist_ok=True)
         
     | 
| 19 | 
         | 
| 20 | 
         
            +
            # Hugging Face & Transformers cache
         
     | 
| 21 | 
         
             
            os.environ.update({
         
     | 
| 
         | 
|
| 22 | 
         
             
                "HF_HOME": model_cache_dir,
         
     | 
| 23 | 
         
            +
                "TRANSFORMERS_CACHE": model_cache_dir,
         
     | 
| 24 | 
         
             
                "VLLM_CACHE_DIR": vllm_cache_dir,
         
     | 
| 25 | 
         
             
                "TOKENIZERS_PARALLELISM": "false",
         
     | 
| 26 | 
         
             
                "CUDA_LAUNCH_BLOCKING": "1"
         
     | 
| 
         | 
|
| 28 | 
         | 
| 29 | 
         
             
            from txagent.txagent import TxAgent
         
     | 
| 30 | 
         | 
| 31 | 
         
            +
            MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
         
     | 
| 32 | 
         
            +
                                'allergies', 'summary', 'impression', 'findings', 'recommendations'}
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 33 | 
         | 
| 34 | 
         
            +
            def sanitize_utf8(text): return text.encode("utf-8", "ignore").decode("utf-8")
         
     | 
| 35 | 
         
            +
            def file_hash(path): return hashlib.md5(open(path, "rb").read()).hexdigest()
         
     | 
| 
         | 
|
| 36 | 
         | 
| 37 | 
         
            +
            def extract_priority_pages(file_path, max_pages=20):
         
     | 
| 38 | 
         
             
                try:
         
     | 
| 
         | 
|
| 39 | 
         
             
                    with pdfplumber.open(file_path) as pdf:
         
     | 
| 40 | 
         
            +
                        pages = []
         
     | 
| 41 | 
         
             
                        for i, page in enumerate(pdf.pages[:3]):
         
     | 
| 42 | 
         
            +
                            pages.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
         
     | 
| 43 | 
         
             
                        for i, page in enumerate(pdf.pages[3:max_pages], start=4):
         
     | 
| 44 | 
         
            +
                            text = page.extract_text() or ""
         
     | 
| 45 | 
         
            +
                            if any(re.search(rf'\b{kw}\b', text.lower()) for kw in MEDICAL_KEYWORDS):
         
     | 
| 46 | 
         
            +
                                pages.append(f"=== Page {i} ===\n{text.strip()}")
         
     | 
| 47 | 
         
            +
                        return "\n\n".join(pages)
         
     | 
| 48 | 
         
             
                except Exception as e:
         
     | 
| 49 | 
         
             
                    return f"PDF processing error: {str(e)}"
         
     | 
| 50 | 
         | 
| 51 | 
         
            +
            def convert_file_to_json(file_path, file_type):
         
     | 
| 52 | 
         
             
                try:
         
     | 
| 53 | 
         
             
                    h = file_hash(file_path)
         
     | 
| 54 | 
         
             
                    cache_path = os.path.join(file_cache_dir, f"{h}.json")
         
     | 
| 55 | 
         
            +
                    if os.path.exists(cache_path): return open(cache_path, "r", encoding="utf-8").read()
         
     | 
| 
         | 
|
| 56 | 
         | 
| 57 | 
         
             
                    if file_type == "pdf":
         
     | 
| 58 | 
         
             
                        text = extract_priority_pages(file_path)
         
     | 
| 
         | 
|
| 60 | 
         
             
                        Thread(target=full_pdf_processing, args=(file_path, h)).start()
         
     | 
| 61 | 
         
             
                    elif file_type == "csv":
         
     | 
| 62 | 
         
             
                        df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
         
     | 
| 63 | 
         
            +
                        result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").astype(str).values.tolist()})
         
     | 
| 
         | 
|
| 64 | 
         
             
                    elif file_type in ["xls", "xlsx"]:
         
     | 
| 65 | 
         
             
                        try:
         
     | 
| 66 | 
         
             
                            df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
         
     | 
| 67 | 
         
             
                        except:
         
     | 
| 68 | 
         
             
                            df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
         
     | 
| 69 | 
         
            +
                        result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").astype(str).values.tolist()})
         
     | 
| 
         | 
|
| 70 | 
         
             
                    else:
         
     | 
| 71 | 
         
             
                        return json.dumps({"error": f"Unsupported file type: {file_type}"})
         
     | 
| 72 | 
         | 
| 73 | 
         
            +
                    with open(cache_path, "w", encoding="utf-8") as f: f.write(result)
         
     | 
| 
         | 
|
| 74 | 
         
             
                    return result
         
     | 
| 
         | 
|
| 75 | 
         
             
                except Exception as e:
         
     | 
| 76 | 
         
             
                    return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
         
     | 
| 77 | 
         | 
| 78 | 
         
            +
            def full_pdf_processing(file_path, file_hash_value):
         
     | 
| 79 | 
         
             
                try:
         
     | 
| 80 | 
         
            +
                    cache_path = os.path.join(file_cache_dir, f"{file_hash_value}_full.json")
         
     | 
| 81 | 
         
            +
                    if os.path.exists(cache_path): return
         
     | 
| 
         | 
|
| 82 | 
         
             
                    with pdfplumber.open(file_path) as pdf:
         
     | 
| 83 | 
         
             
                        full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
         
     | 
| 84 | 
         
             
                    result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
         
     | 
| 85 | 
         
            +
                    with open(cache_path, "w", encoding="utf-8") as f: f.write(result)
         
     | 
| 86 | 
         
            +
                    with open(os.path.join(report_dir, f"{file_hash_value}_report.txt"), "w", encoding="utf-8") as out: out.write(full_text)
         
     | 
| 
         | 
|
| 
         | 
|
| 87 | 
         
             
                except Exception as e:
         
     | 
| 88 | 
         
            +
                    print("PDF processing error:", e)
         
     | 
| 89 | 
         | 
| 90 | 
         
             
            def init_agent():
         
     | 
| 91 | 
         
             
                default_tool_path = os.path.abspath("data/new_tool.json")
         
     | 
| 
         | 
|
| 100 | 
         
             
                    force_finish=True,
         
     | 
| 101 | 
         
             
                    enable_checker=True,
         
     | 
| 102 | 
         
             
                    step_rag_num=8,
         
     | 
| 103 | 
         
            +
                    seed=100
         
     | 
| 
         | 
|
| 104 | 
         
             
                )
         
     | 
| 105 | 
         
             
                agent.init_model()
         
     | 
| 106 | 
         
             
                return agent
         
     | 
| 107 | 
         | 
| 108 | 
         
            +
            # Lazy load agent only on first use
         
     | 
| 109 | 
         
            +
            agent_container = {"agent": None}
         
     | 
| 110 | 
         
            +
            def get_agent():
         
     | 
| 111 | 
         
            +
                if agent_container["agent"] is None:
         
     | 
| 112 | 
         
            +
                    agent_container["agent"] = init_agent()
         
     | 
| 113 | 
         
            +
                return agent_container["agent"]
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            def create_ui(get_agent_func):
         
     | 
| 116 | 
         
             
                with gr.Blocks(theme=gr.themes.Soft()) as demo:
         
     | 
| 117 | 
         
            +
                    gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1><h3 style='text-align: center;'>Identify potential oversights in patient care</h3>")
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 118 | 
         | 
| 119 | 
         
             
                    chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
         
     | 
| 120 | 
         
            +
                    file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
         
     | 
| 121 | 
         
            +
                    msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
         
     | 
| 122 | 
         
             
                    send_btn = gr.Button("Analyze", variant="primary")
         
     | 
| 123 | 
         
            +
                    state = gr.State([])
         
     | 
| 124 | 
         
            +
                    download_output = gr.File(label="Download Report")
         
     | 
| 125 | 
         | 
| 126 | 
         
            +
                    def analyze(message, history, conversation, files):
         
     | 
| 127 | 
         
             
                        try:
         
     | 
| 128 | 
         
            +
                            extracted_data, file_hash_value = "", ""
         
     | 
| 129 | 
         
            +
                            if files:
         
     | 
| 130 | 
         
            +
                                with ThreadPoolExecutor(max_workers=4) as pool:
         
     | 
| 131 | 
         
            +
                                    futures = [pool.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
         
     | 
| 
         | 
|
| 
         | 
|
| 132 | 
         
             
                                    extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
         
     | 
| 133 | 
         
            +
                                    file_hash_value = file_hash(files[0].name)
         
     | 
| 134 | 
         | 
| 135 | 
         
             
                            prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
         
     | 
| 136 | 
         
             
            1. List potential missed diagnoses
         
     | 
| 
         | 
|
| 142 | 
         | 
| 143 | 
         
             
            ### Potential Oversights:\n"""
         
     | 
| 144 | 
         | 
| 145 | 
         
            +
                            final_response = ""
         
     | 
| 146 | 
         
            +
                            for chunk in get_agent_func().run_gradio_chat(
         
     | 
| 147 | 
         
             
                                message=prompt,
         
     | 
| 148 | 
         
             
                                history=[],
         
     | 
| 149 | 
         
             
                                temperature=0.2,
         
     | 
| 
         | 
|
| 153 | 
         
             
                                conversation=conversation
         
     | 
| 154 | 
         
             
                            ):
         
     | 
| 155 | 
         
             
                                if isinstance(chunk, str):
         
     | 
| 156 | 
         
            +
                                    final_response += chunk
         
     | 
| 157 | 
         
             
                                elif isinstance(chunk, list):
         
     | 
| 158 | 
         
            +
                                    final_response += "".join([c.content for c in chunk if hasattr(c, "content")])
         
     | 
| 159 | 
         | 
| 160 | 
         
            +
                            cleaned = final_response.replace("[TOOL_CALLS]", "").strip()
         
     | 
| 161 | 
         
             
                            if not cleaned:
         
     | 
| 162 | 
         
            +
                                cleaned = "No oversights found. Consider further review."
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 163 | 
         | 
| 164 | 
         
            +
                            updated_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": cleaned}]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 165 | 
         | 
| 166 | 
         
            +
                            report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value and os.path.exists(os.path.join(report_dir, f"{file_hash_value}_report.txt")) else None
         
     | 
| 167 | 
         
             
                            yield updated_history, report_path
         
     | 
| 
         | 
|
| 168 | 
         
             
                        except Exception as e:
         
     | 
| 169 | 
         
            +
                            updated_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"❌ Error: {str(e)}"}]
         
     | 
| 
         | 
|
| 170 | 
         
             
                            yield updated_history, None
         
     | 
| 171 | 
         | 
| 172 | 
         
            +
                    send_btn.click(analyze, inputs=[msg_input, chatbot, state, file_upload], outputs=[chatbot, download_output])
         
     | 
| 173 | 
         
            +
                    msg_input.submit(analyze, inputs=[msg_input, chatbot, state, file_upload], outputs=[chatbot, download_output])
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 174 | 
         | 
| 175 | 
         
             
                return demo
         
     | 
| 176 | 
         | 
| 177 | 
         
             
            if __name__ == "__main__":
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 178 | 
         
             
                print("Launching interface...")
         
     | 
| 179 | 
         
            +
                ui = create_ui(get_agent)
         
     | 
| 180 | 
         
            +
                ui.queue(api_open=False).launch(
         
     | 
| 181 | 
         
             
                    server_name="0.0.0.0",
         
     | 
| 182 | 
         
             
                    server_port=7860,
         
     | 
| 183 | 
         
             
                    show_error=True,
         
     |