File size: 11,241 Bytes
f75a23b
f394b25
d184610
f394b25
e41225f
1244d40
d16299c
1c5bd8e
d16299c
4b4b32b
 
 
d8282f1
f6e551c
 
 
d16299c
f6e551c
 
 
 
 
 
 
 
 
 
f75a23b
d16299c
 
 
1244d40
 
 
e41225f
4b4b32b
 
 
 
 
 
 
e41225f
4b4b32b
f6e551c
d16299c
f6e551c
 
 
 
d16299c
 
f6e551c
d16299c
 
f6e551c
e41225f
f6e551c
ad85a12
 
f260d4a
 
 
 
 
 
 
 
 
e41225f
 
ad85a12
 
e41225f
 
 
 
 
 
ad85a12
 
 
 
 
 
f260d4a
e41225f
4b4b32b
f260d4a
ad85a12
f260d4a
ad85a12
 
f260d4a
ad85a12
 
 
e41225f
 
ad85a12
 
 
 
 
28e1ce8
ad85a12
 
 
 
 
 
 
 
e41225f
ad85a12
 
 
 
 
 
f6e551c
d16299c
f6e551c
 
6e39ead
f6e551c
 
6e39ead
f6e551c
d16299c
 
f6e551c
d16299c
 
 
 
e41225f
 
d16299c
f6e551c
 
d16299c
e41225f
 
4b4b32b
e41225f
 
 
 
 
 
 
 
4b4b32b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e41225f
 
4b4b32b
e41225f
 
 
4b4b32b
e41225f
 
 
9a0b74b
e41225f
585f453
e41225f
 
 
 
 
 
4b4b32b
e41225f
 
 
 
 
 
4b4b32b
e41225f
 
 
6dea94e
e41225f
 
 
6dea94e
e41225f
 
 
 
 
 
 
 
 
 
 
f260d4a
e41225f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585f453
 
 
 
 
e41225f
 
 
 
585f453
4b4b32b
e41225f
 
affa0af
e41225f
 
 
 
585f453
 
 
 
e41225f
585f453
 
e41225f
585f453
 
e41225f
585f453
 
 
 
 
e41225f
585f453
 
 
 
e41225f
585f453
e41225f
5b0bfb5
e41225f
 
 
585f453
e41225f
a71a831
55e3db0
f394b25
d8282f1
d16299c
e41225f
13ad0d3
d8282f1
 
1bdb280
e41225f
 
d8282f1
 
e41225f
c7670bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple, Dict, Any, Union, Generator
import shutil
import re
from datetime import datetime
import time
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Updated token limits as specified
MAX_MODEL_TOKENS = 131072  # TxAgent's max token limit
MAX_CHUNK_TOKENS = 32768   # Larger chunks to reduce number of chunks
MAX_NEW_TOKENS = 512       # Optimized for fast generation
PROMPT_OVERHEAD = 500      # Estimated tokens for prompt template
MAX_CONCURRENT = 8         # High concurrency for A100 80GB

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1  # More conservative estimate

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    try:
        xls = pd.ExcelFile(file_path)
        for sheet_name in xls.sheet_names:
            df = xls.parse(sheet_name)
            df = df.astype(str).fillna("")
            rows = df.apply(lambda row: " | ".join(row), axis=1)
            sheet_text = [f"[{sheet_name}] {line}" for line in rows]
            all_text.extend(sheet_text)
    except Exception as e:
        logger.error(f"Error extracting Excel: {str(e)}")
        raise ValueError(f"Failed to process Excel file: {str(e)}")
    return "\n".join(all_text)

def split_text_into_chunks(text: str) -> List[str]:
    """Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD"""
    effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
    if effective_max <= 0:
        raise ValueError("Effective max tokens must be positive")
    
    lines = text.split("\n")
    chunks = []
    current_chunk = []
    current_tokens = 0

    for line in lines:
        line_tokens = estimate_tokens(line)
        if current_tokens + line_tokens > effective_max:
            if current_chunk:
                chunks.append("\n".join(current_chunk))
            current_chunk = [line]
            current_tokens = line_tokens
        else:
            current_chunk.append(line)
            current_tokens += line_tokens

    if current_chunk:
        chunks.append("\n".join(current_chunk))
    
    logger.info(f"Split text into {len(chunks)} chunks")
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.

**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.

Here is the extracted content chunk:

{chunk}

Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tokens):
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")

    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
        max_model_tokens=MAX_MODEL_TOKENS  # Pass the updated token limit
    )
    agent.init_model()
    return agent

async def process_chunk(agent: TxAgent, chunk: str, chunk_idx: int) -> Tuple[int, str]:
    """Process a single chunk with error handling"""
    try:
        prompt = build_prompt_from_text(chunk)
        prompt_tokens = estimate_tokens(prompt)
        
        if prompt_tokens > MAX_MODEL_TOKENS:
            logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)")
            return chunk_idx, ""
        
        response = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_MODEL_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, str):
                response += result
            elif hasattr(result, "content"):
                response += result.content
            elif isinstance(result, list):
                for r in result:
                    if hasattr(r, "content"):
                        response += r.content
        
        return chunk_idx, clean_response(response)
    
    except Exception as e:
        logger.error(f"Error processing chunk {chunk_idx}: {str(e)}")
        return chunk_idx, ""

async def process_file(agent: TxAgent, file_path: str) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]:
    """Process the entire file and yield progress updates"""
    messages = []
    report_path = None
    
    try:
        # Initial messages
        messages.append({"role": "user", "content": f"Processing file: {os.path.basename(file_path)}"})
        messages.append({"role": "assistant", "content": "⏳ Extracting data from Excel..."})
        yield messages, None
        
        # Extract and chunk text
        start_time = time.time()
        text = extract_text_from_excel(file_path)
        chunks = split_text_into_chunks(text)
        messages.append({"role": "assistant", "content": f"βœ… Extracted {len(chunks)} chunks in {time.time()-start_time:.1f}s"})
        yield messages, None
        
        # Process chunks in parallel
        chunk_responses = [None] * len(chunks)
        with ThreadPoolExecutor(max_workers=MAX_CONCURRENT) as executor:
            futures = []
            for idx, chunk in enumerate(chunks):
                future = executor.submit(
                    lambda c, i: asyncio.run(process_chunk(agent, c, i)),
                    chunk, idx
                )
                futures.append(future)
                messages.append({"role": "assistant", "content": f"πŸ” Processing chunk {idx+1}/{len(chunks)}..."})
                yield messages, None
            
            for future in as_completed(futures):
                idx, response = future.result()
                chunk_responses[idx] = response
                messages.append({"role": "assistant", "content": f"βœ… Chunk {idx+1} processed"})
                yield messages, None
        
        # Combine and summarize
        combined = "\n\n".join([r for r in chunk_responses if r])
        messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})
        yield messages, None
        
        final_response = ""
        for result in agent.run_gradio_chat(
            message=f"Summarize these clinical findings:\n\n{combined}",
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS*2,  # Allow more tokens for summary
            max_token=MAX_MODEL_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, str):
                final_response += result
            elif hasattr(result, "content"):
                final_response += result.content
            elif isinstance(result, list):
                for r in result:
                    if hasattr(r, "content"):
                        final_response += r.content
            
            messages[-1]["content"] = f"πŸ“Š Generating final report...\n\n{clean_response(final_response)}"
            yield messages, None
        
        # Save report
        final_report = f"# Final Clinical Report\n\n{clean_response(final_response)}"
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        report_path = os.path.join(report_dir, f"report_{timestamp}.md")
        
        with open(report_path, 'w') as f:
            f.write(final_report)
        
        messages.append({"role": "assistant", "content": f"βœ… Report saved: report_{timestamp}.md"})
        yield messages, report_path
    
    except Exception as e:
        logger.error(f"Processing failed: {str(e)}")
        messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
        yield messages, None

def create_ui(agent: TxAgent):
    """Create the Gradio interface"""
    with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo:
        gr.Markdown("## πŸ₯ Clinical Data Analysis (TxAgent)")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Analysis Progress",
                    show_copy_button=True,
                    height=600,
                    type="messages"
                )
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload Excel File",
                    file_types=[".xlsx"],
                    height=100
                )
                analyze_btn = gr.Button(
                    "🧠 Analyze Data",
                    variant="primary"
                )
                report_output = gr.File(
                    label="Download Report",
                    visible=False
                )
        
        analyze_btn.click(
            fn=lambda file: process_file(agent, file.name) if file else ([{"role": "assistant", "content": "❌ Please upload a file"}], None),
            inputs=[file_input],
            outputs=[chatbot, report_output]
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        logger.error(f"Application failed: {str(e)}")
        sys.exit(1)