File size: 12,312 Bytes
13560d3
7323cb6
 
 
dae38a2
7323cb6
 
 
 
1da2cfd
7323cb6
 
 
 
 
 
 
dae38a2
7323cb6
e24be23
7323cb6
e24be23
 
 
7323cb6
f05e804
dae38a2
7323cb6
 
 
 
 
e24be23
1da2cfd
1fa1ea5
7323cb6
f05e804
1da2cfd
 
 
dae38a2
cf5094d
dae38a2
7323cb6
 
 
 
dae38a2
7323cb6
 
 
 
 
 
 
 
1da2cfd
7323cb6
1da2cfd
 
7323cb6
1da2cfd
7323cb6
e2da061
7323cb6
 
1da2cfd
 
e24be23
7323cb6
dae38a2
 
e24be23
7323cb6
 
dae38a2
1da2cfd
 
1ebbef1
1da2cfd
7323cb6
1da2cfd
7323cb6
 
 
 
dae38a2
7323cb6
 
 
 
 
 
 
dae38a2
 
 
7323cb6
 
dae38a2
7323cb6
dae38a2
7323cb6
1da2cfd
7323cb6
1da2cfd
7323cb6
 
 
1da2cfd
7323cb6
 
 
 
 
 
 
 
e24be23
 
7323cb6
e24be23
 
7323cb6
e24be23
 
7323cb6
 
e24be23
 
 
 
7323cb6
 
e24be23
 
 
 
7323cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dae38a2
e24be23
 
7323cb6
 
 
 
 
e2da061
e24be23
 
 
e778114
 
7323cb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache
from threading import Thread
import re
import tempfile

# Environment setup
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

# Cache directories
base_dir = "/data"
os.makedirs(base_dir, exist_ok=True)
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
report_dir = "/data/reports"
vllm_cache_dir = os.path.join(base_dir, "vllm_cache")

os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)
os.makedirs(report_dir, exist_ok=True)
os.makedirs(vllm_cache_dir, exist_ok=True)

os.environ.update({
    "TRANSFORMERS_CACHE": model_cache_dir,
    "HF_HOME": model_cache_dir,
    "VLLM_CACHE_DIR": vllm_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {
    'diagnosis', 'assessment', 'plan', 'results', 'medications',
    'allergies', 'summary', 'impression', 'findings', 'recommendations'
}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages[:3]):
                text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            return open(cache_path, "r", encoding="utf-8").read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
            Thread(target=full_pdf_processing, args=(file_path, h)).start()

        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})

        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})

        else:
            return json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result

    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def full_pdf_processing(file_path: str, file_hash: str):
    try:
        cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
        if os.path.exists(cache_path):
            return
        with pdfplumber.open(file_path) as pdf:
            full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
        result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out:
            out.write(full_text)
    except Exception as e:
        print(f"Background processing failed: {str(e)}")

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def format_response(response: str) -> str:
    """Clean and format the response for display"""
    # Remove all tool call artifacts
    response = response.replace("[TOOL_CALLS]", "").strip()
    
    # Remove duplicate sections if they exist
    if "Based on the medical records provided" in response:
        parts = response.split("Based on the medical records provided")
        if len(parts) > 1:
            response = "Based on the medical records provided" + parts[-1]
    
    # Format sections with Markdown
    formatted = response.replace("1. **Missed Diagnoses**:", "### πŸ” Missed Diagnoses")
    formatted = formatted.replace("2. **Medication Conflicts**:", "\n### πŸ’Š Medication Conflicts")
    formatted = formatted.replace("3. **Incomplete Assessments**:", "\n### πŸ“‹ Incomplete Assessments")
    formatted = formatted.replace("4. **Abnormal Results Needing Follow-up**:", "\n### ⚠️ Abnormal Results Needing Follow-up")
    formatted = formatted.replace("Overall, the patient's medical records", "\n### πŸ“ Overall Assessment")
    
    return formatted

def analyze_potential_oversights(message: str, history: list, conversation: list, files: list):
    start_time = time.time()
    try:
        # Initial loading message
        history = history + [
            {"role": "user", "content": message},
            {"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
        ]
        yield history, None

        # Process uploaded files
        extracted_data = ""
        file_hash_value = ""
        if files and isinstance(files, list):
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) 
                          for f in files if hasattr(f, 'name')]
                extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
                file_hash_value = file_hash(files[0].name) if files else ""

        # Prepare the analysis prompt
        analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:\n{extracted_data[:15000]}

### Potential Oversights:\n"""

        # Process the response from the agent
        full_response = ""
        for chunk in agent.run_gradio_chat(
            message=analysis_prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=1024,
            max_token=4096,
            call_agent=False,
            conversation=conversation
        ):
            if isinstance(chunk, str):
                full_response += chunk
            elif isinstance(chunk, list):
                full_response += "".join([c.content for c in chunk if hasattr(c, 'content')])

            # Format and display the partial response
            formatted = format_response(full_response)
            if formatted.strip():
                history = history[:-1] + [{"role": "assistant", "content": formatted}]
                yield history, None

        # Final formatting and cleanup
        final_output = format_response(full_response)
        if not final_output.strip():
            final_output = "No clear oversights identified. Recommend comprehensive review."

        # Prepare report download if available
        report_path = None
        if file_hash_value:
            possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
            if os.path.exists(possible_report):
                report_path = possible_report

        # Update history with final response
        history = history[:-1] + [{"role": "assistant", "content": final_output}]
        yield history, report_path

    except Exception as e:
        history.append({"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"})
        yield history, None

def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo:
        gr.Markdown("""
        <div style='text-align: center;'>
            <h1>🩺 Clinical Oversight Assistant</h1>
            <h3>Identify potential oversights in patient care</h3>
            <p>Upload medical records to analyze for missed diagnoses, medication conflicts, and other potential issues.</p>
        </div>
        """)

        with gr.Row():
            with gr.Column(scale=2):
                file_upload = gr.File(
                    label="Upload Medical Records", 
                    file_types=[".pdf", ".csv", ".xls", ".xlsx"], 
                    file_count="multiple",
                    height=100
                )
                msg_input = gr.Textbox(
                    placeholder="Ask about potential oversights...", 
                    show_label=False,
                    lines=3,
                    max_lines=6
                )
                send_btn = gr.Button("Analyze", variant="primary", size="lg")
                
                gr.Examples(
                    examples=[
                        ["What might have been missed in this patient's treatment?"],
                        ["Are there any medication conflicts in these records?"],
                        ["What abnormal results require follow-up?"],
                        ["Identify any incomplete assessments in these records"]
                    ],
                    inputs=msg_input,
                    label="Example Queries"
                )

            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Analysis Results", 
                    height=600,
                    show_copy_button=True,
                    avatar_images=(
                        "assets/user.png", 
                        "assets/doctor.png"
                    )
                )
                download_output = gr.File(
                    label="Download Full Report",
                    visible=False
                )

        conversation_state = gr.State([])

        inputs = [msg_input, chatbot, conversation_state, file_upload]
        outputs = [chatbot, download_output]
        
        send_btn.click(
            analyze_potential_oversights, 
            inputs=inputs, 
            outputs=outputs
        )
        msg_input.submit(
            analyze_potential_oversights, 
            inputs=inputs, 
            outputs=outputs
        )

    return demo

if __name__ == "__main__":
    print("Initializing medical analysis agent...")
    agent = init_agent()

    print("Launching interface...")
    demo = create_ui(agent)
    demo.queue().launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=["/data/reports"],
        share=False
    )