File size: 13,157 Bytes
f75a23b f394b25 d184610 f394b25 f75a23b a7e68bf 1244d40 1c5bd8e d184610 a7e68bf d8282f1 a7e68bf cbf903d f75a23b 1244d40 a7e68bf cbf903d 1244d40 f75a23b a7e68bf f75a23b a7e68bf cbf903d a7e68bf 1c5bd8e a7e68bf 3213a0d cbf903d a7e68bf cbf903d a7e68bf 3213a0d cbf903d a7e68bf cbf903d 3213a0d a7e68bf cbf903d a7e68bf cbf903d 3213a0d a7e68bf d8282f1 a7e68bf cbf903d a7e68bf 3213a0d a7e68bf e4d9325 a7e68bf cbf903d a7e68bf e4d9325 a7e68bf d184610 1244d40 a7e68bf cbf903d a7e68bf cbf903d a7e68bf f75a23b a7e68bf 1244d40 a7e68bf 1244d40 a7e68bf d184610 a7e68bf d8282f1 a7e68bf 3213a0d d8282f1 a7e68bf 3213a0d a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 cbf903d a7e68bf d184610 a7e68bf cbf903d a7e68bf d8282f1 a7e68bf d184610 d8282f1 a71a831 55e3db0 f394b25 d8282f1 a7e68bf d8282f1 cbf903d d8282f1 a7e68bf d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import sys
import os
import pandas as pd
import gradio as gr
import re
import hashlib
import shutil
from datetime import datetime
from collections import defaultdict
from typing import List, Dict, Tuple
# Configuration
WORKING_DIR = os.getcwd()
REPORT_DIR = os.path.join(WORKING_DIR, "reports")
os.makedirs(REPORT_DIR, exist_ok=True)
# Model configuration
MODEL_CACHE_DIR = os.path.join(WORKING_DIR, "model_cache")
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
os.environ["HF_HOME"] = MODEL_CACHE_DIR
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE_DIR
# Import TxAgent after setting up environment
sys.path.append(os.path.join(WORKING_DIR, "src"))
from txagent.txagent import TxAgent
class PatientHistoryAnalyzer:
def __init__(self):
self.max_token_length = 2000
self.max_text_length = 500
self.agent = self._initialize_agent()
def _initialize_agent(self):
"""Initialize the TxAgent with proper configuration"""
tool_path = os.path.join(WORKING_DIR, "data", "new_tool.json")
if not os.path.exists(tool_path):
raise FileNotFoundError(f"Tool file not found at {tool_path}")
return TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
def clean_text(self, text: str) -> str:
"""Clean and normalize text fields"""
if not isinstance(text, str):
text = str(text)
text = re.sub(r'\s+', ' ', text).strip()
return text[:self.max_text_length]
def process_excel(self, file_path: str) -> Dict[str, List]:
"""Process Excel file into structured patient data"""
try:
df = pd.read_excel(file_path)
df = df.sort_values('Interview Date')
data = {
'timeline': [],
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'doctors': set(),
'all_entries': []
}
for _, row in df.iterrows():
entry = {
'date': self.clean_text(row.get('Interview Date', '')),
'doctor': self.clean_text(row.get('Interviewer', '')),
'form': self.clean_text(row.get('Form Name', '')),
'item': self.clean_text(row.get('Form Item', '')),
'response': self.clean_text(row.get('Item Response', '')),
'notes': self.clean_text(row.get('Description', ''))
}
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
data['all_entries'].append(entry)
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower:
data['tests'][entry['item']].append(entry)
return data
except Exception as e:
raise ValueError(f"Error processing Excel file: {str(e)}")
def generate_analysis_prompt(self, patient_data: Dict) -> List[Dict]:
"""Generate analysis prompts that respect token limits"""
prompts = []
# Current Status Prompt
current_prompt = self._create_current_status_prompt(patient_data)
prompts.append({
'type': 'current_status',
'content': current_prompt
})
# Historical Analysis Prompt
if len(patient_data['all_entries']) > 10:
history_prompt = self._create_historical_prompt(patient_data)
prompts.append({
'type': 'historical',
'content': history_prompt
})
# Medication-Specific Prompt
if len(patient_data['medications']) > 3:
meds_prompt = self._create_medication_prompt(patient_data)
prompts.append({
'type': 'medications',
'content': meds_prompt
})
return prompts
def _create_current_status_prompt(self, data: Dict) -> str:
"""Create prompt for current patient status"""
recent_entries = data['timeline'][-10:]
prompt_lines = [
"**Comprehensive Patient Status Analysis**",
"Focus on RECENT appointments and CURRENT health status.",
"Analyze for:",
"- Medication consistency",
"- Diagnostic agreement between providers",
"- Recent concerning findings",
"- Immediate follow-up needs",
"",
"**Recent Timeline (last 10 entries):**"
]
for entry in recent_entries:
prompt_lines.append(
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
)
prompt_lines.extend([
"",
"**Current Medications:**",
*[f"- {med}: {entries[-1]['response']} (last updated {entries[-1]['date']})"
for med, entries in data['medications'].items()],
"",
"**Active Diagnoses:**",
*[f"- {diag}: {entries[-1]['response']} (last updated {entries[-1]['date']})"
for diag, entries in data['diagnoses'].items()],
"",
"**Required Output Format:**",
"### Summary of Current Status",
"### Medication Review",
"### Diagnostic Consistency",
"### Urgent Concerns",
"### Recommended Actions"
])
return "\n".join(prompt_lines)
def _create_historical_prompt(self, data: Dict) -> str:
"""Create prompt for historical analysis"""
return "\n".join([
"**Historical Patient Analysis**",
"Focus on LONG-TERM PATTERNS and HISTORY.",
"",
"**Key Analysis Points:**",
"- Treatment changes over time",
"- Recurring symptoms/issues",
"- Diagnostic evolution",
"- Medication history",
"",
"**Historical Timeline (condensed):**",
*[f"- {entry['date'][:7]}: {entry['form']} - {entry['response']}"
for entry in data['all_entries'][:-10]],
"",
"**Required Output Format:**",
"### Historical Patterns",
"### Treatment Evolution",
"### Chronic Issues",
"### Long-term Recommendations"
])
def _create_medication_prompt(self, data: Dict) -> str:
"""Create medication-specific prompt"""
return "\n".join([
"**Medication-Specific Analysis**",
"Focus on MEDICATION HISTORY and POTENTIAL ISSUES.",
"",
"**Medication History:**",
*[f"- {med}: " + ", ".join(
f"{e['date']}: {e['response']} (by {e['doctor']})"
for e in entries
) for med, entries in data['medications'].items()],
"",
"**Analysis Focus:**",
"- Potential interactions",
"- Dosage changes",
"- Prescriber patterns",
"- Adherence issues",
"",
"**Required Output Format:**",
"### Medication Summary",
"### Potential Issues",
"### Prescriber Patterns",
"### Recommendations"
])
def _call_agent(self, prompt: str) -> str:
"""Call TxAgent with proper error handling"""
try:
response = ""
for result in self.agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=2048,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += r.content + "\n"
elif isinstance(result, str):
response += result + "\n"
return response.strip()
except Exception as e:
return f"Error in model response: {str(e)}"
def generate_report(self, analysis_results: List[str]) -> Tuple[str, str]:
"""Combine analysis results into final report"""
report = [
"# Comprehensive Patient History Analysis",
f"**Generated on**: {datetime.now().strftime('%Y-%m-%d %H:%M')}",
""
]
for result in analysis_results:
report.extend(["", "---", "", result])
report.extend([
"",
"## Overall Clinical Summary",
"This report combines analyses of:",
"- Current health status",
"- Historical patterns",
"- Medication history",
"",
"**Key Takeaways:**",
"[Generated summary of most critical findings would appear here]"
])
full_report = "\n".join(report)
# Save to file in working directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_filename = f"patient_report_{timestamp}.md"
report_path = os.path.join(REPORT_DIR, report_filename)
with open(report_path, 'w') as f:
f.write(full_report)
return full_report, report_path
def analyze(self, file_path: str) -> Tuple[str, str]:
"""Main analysis workflow"""
try:
patient_data = self.process_excel(file_path)
prompts = self.generate_analysis_prompt(patient_data)
# Call TxAgent for each prompt
analysis_results = []
for prompt in prompts:
response = self._call_agent(prompt['content'])
analysis_results.append(response)
return self.generate_report(analysis_results)
except Exception as e:
return f"Error during analysis: {str(e)}", ""
def create_interface():
analyzer = PatientHistoryAnalyzer()
with gr.Blocks(title="Patient History Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Patient Records (Excel)",
file_types=[".xlsx"],
type="filepath"
)
analyze_btn = gr.Button("Analyze Full History", variant="primary")
with gr.Column(scale=2):
output_display = gr.Markdown(
label="Analysis Results",
elem_id="results"
)
report_download = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload** your patient's Excel file
2. **Click Analyze** to process the history
3. **Review** the comprehensive analysis
4. **Download** the full report
### File Requirements
Excel file must contain:
- Booking Number
- Form Name
- Form Item
- Item Response
- Interview Date
- Interviewer
- Description
""")
analyze_btn.click(
fn=analyzer.analyze,
inputs=file_input,
outputs=[output_display, report_download],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[WORKING_DIR, REPORT_DIR]
)
except Exception as e:
print(f"Error launching application: {str(e)}")
sys.exit(1) |