File size: 8,277 Bytes
7e55ae2
 
d184610
7e55ae2
a1a096d
7e55ae2
 
 
 
 
 
095998d
59f3278
7e55ae2
a1a096d
f6e551c
 
a57b988
f6e551c
8c16b9e
a1a096d
 
8c16b9e
4bfbcac
0fb33af
f75a23b
7e55ae2
c5da27e
 
 
 
8b1bbeb
1244d40
7e55ae2
 
 
 
 
 
 
a1a096d
 
f6e551c
a1a096d
ad85a12
59f3278
7e55ae2
936692d
7e55ae2
936692d
2639902
7e55ae2
a53de3c
936692d
7e55ae2
 
 
1a611b9
8b1bbeb
7e55ae2
a1a096d
7e55ae2
a1a096d
7e55ae2
 
a1a096d
 
7e55ae2
ad85a12
a1a096d
7e55ae2
a1a096d
 
ad85a12
 
7e55ae2
 
a53de3c
a1a096d
59f3278
a1a096d
7e55ae2
 
 
 
 
a1a096d
 
 
 
1a611b9
 
 
a1a096d
1a611b9
 
 
a1a096d
1a611b9
 
 
a57b988
095998d
 
 
67af08d
095998d
 
 
 
a1a096d
 
 
 
a53de3c
095998d
 
a1a096d
 
 
 
 
 
 
 
 
 
 
 
095998d
 
 
 
 
 
 
 
a1a096d
 
 
7e55ae2
 
a1a096d
 
 
a53de3c
a1a096d
 
 
 
 
 
7e55ae2
a1a096d
 
 
7e55ae2
a1a096d
7e55ae2
 
a1a096d
7e55ae2
a1a096d
 
 
 
7e55ae2
a1a096d
7e55ae2
 
 
a53de3c
a1a096d
7e55ae2
 
a1a096d
7e55ae2
a53de3c
a1a096d
 
7e55ae2
 
c5da27e
7e55ae2
a1a096d
c5da27e
a1a096d
7e55ae2
 
a1a096d
c5da27e
 
a1a096d
 
aa559b4
8c16b9e
fe5520f
7e55ae2
 
 
fe5520f
7e55ae2
 
 
 
 
26faa43
7e55ae2
26faa43
7e55ae2
 
a1a096d
26faa43
7e55ae2
7771dd9
a71a831
55e3db0
abd27cc
7e55ae2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import sys
import os
import pandas as pd
import json
import gradio as gr
from datetime import datetime
import shutil
import gc
import re
import torch
from typing import List, Tuple, Dict
from concurrent.futures import ThreadPoolExecutor, as_completed

# Directories
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

# Paths
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
PROMPT_OVERHEAD = 300
BATCH_SIZE = 2

def estimate_tokens(text: str) -> int:
    return len(text) // 4 + 1

def extract_text_from_excel(path: str) -> str:
    all_text = []
    xls = pd.ExcelFile(path)
    for sheet in xls.sheet_names:
        try:
            df = xls.parse(sheet).astype(str).fillna("")
        except Exception:
            continue
        for _, row in df.iterrows():
            non_empty = [cell.strip() for cell in row if cell.strip()]
            if len(non_empty) >= 2:
                line = " | ".join(non_empty)
                if len(line) > 15:
                    all_text.append(f"[{sheet}] {line}")
    return "\n".join(all_text)

def split_text(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
    effective_limit = max_tokens - PROMPT_OVERHEAD
    chunks, current, tokens = [], [], 0
    for line in text.split("\n"):
        tks = estimate_tokens(line)
        if tokens + tks > effective_limit:
            if current:
                chunks.append("\n".join(current))
            current, tokens = [line], tks
        else:
            current.append(line)
            tokens += tks
    if current:
        chunks.append("\n".join(current))
    return chunks

def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
    return [chunks[i:i + batch_size] for i in range(0, len(chunks), batch_size)]

def build_prompt(chunk: str) -> str:
    return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    return text.strip()

def init_agent() -> TxAgent:
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent



def analyze_batches(agent, batches: List[List[str]], max_workers: int = 3) -> List[str]:
    results = []

    def process_single_batch(batch):
        prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
        response = ""
        try:
            for r in agent.run_gradio_chat(
                message=prompt,
                history=[],
                temperature=0.0,
                max_new_tokens=4096,
                max_token=131072,
                call_agent=False,
                conversation=[]
            ):
                if isinstance(r, str):
                    response += r
                elif isinstance(r, list):
                    for m in r:
                        if hasattr(m, "content"):
                            response += m.content
                elif hasattr(r, "content"):
                    response += r.content
        except Exception as e:
            response = f"❌ Error: {str(e)}"
        return clean_response(response)

    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = [executor.submit(process_single_batch, batch) for batch in batches]
        for future in as_completed(futures):
            results.append(future.result())

    return results

def generate_final_summary(agent, combined: str) -> str:
    final_prompt = f"""Summarize the following clinical summaries into a final medical report:\n\n{combined}"""
    response = ""
    for r in agent.run_gradio_chat(
        message=final_prompt,
        history=[],
        temperature=0.0,
        max_new_tokens=MAX_NEW_TOKENS,
        max_token=MAX_MODEL_TOKENS,
        call_agent=False,
        conversation=[]
    ):
        if isinstance(r, str):
            response += r
        elif isinstance(r, list):
            for m in r:
                if hasattr(m, "content"):
                    response += m.content
        elif hasattr(r, "content"):
            response += r.content
    return clean_response(response)

def process_file(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
    if not file or not hasattr(file, "name"):
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."})
        return messages, None

    messages.append({"role": "user", "content": f"πŸ“‚ Processing file: {file.name}"})
    try:
        extracted_text = extract_text_from_excel(file.name)
        chunks = split_text(extracted_text)
        batches = batch_chunks(chunks)
        messages.append({"role": "assistant", "content": f"πŸ” Split into {len(batches)} batches. Analyzing..."})

        batch_outputs = analyze_batches(agent, batches)
        valid_outputs = [res for res in batch_outputs if not res.startswith("❌")]

        if not valid_outputs:
            messages.append({"role": "assistant", "content": "❌ No valid batch outputs."})
            return messages, None

        summary = generate_final_summary(agent, "\n\n".join(valid_outputs))

        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, "w", encoding="utf-8") as f:
            f.write(f"# 🧠 Final Medical Report\n\n{summary}")

        messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{summary}"})
        messages.append({"role": "assistant", "content": f"βœ… Saved report: {os.path.basename(report_path)}"})

        return messages, report_path

    except Exception as e:
        messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
        return messages, None

def create_ui(agent):
    with gr.Blocks(css="""
    html, body { background-color: #0e1621; color: #e0e0e0; }
    button { background: #007bff; color: white; border-radius: 8px; padding: 8px 16px; }
    .gr-chatbot { background: #1b2533; border: 1px solid #2a2f45; border-radius: 16px; padding: 10px; }
    """) as demo:
        gr.Markdown("""## 🧠 CPS: Clinical Patient Support Assistant""")
        chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
        upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
        analyze_btn = gr.Button("🧠 Analyze File")
        download = gr.File(label="Download Report", visible=False)

        state = gr.State([])

        def handle_analyze(file, chat_state):
            messages, report_path = process_file(agent, file, chat_state)
            return messages, gr.update(visible=bool(report_path), value=report_path), messages

        analyze_btn.click(fn=handle_analyze, inputs=[upload, state], outputs=[chatbot, download, state])

    return demo

if __name__ == "__main__":
    agent = init_agent()
    ui = create_ui(agent)
    ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)