File size: 8,277 Bytes
7e55ae2 d184610 7e55ae2 a1a096d 7e55ae2 095998d 59f3278 7e55ae2 a1a096d f6e551c a57b988 f6e551c 8c16b9e a1a096d 8c16b9e 4bfbcac 0fb33af f75a23b 7e55ae2 c5da27e 8b1bbeb 1244d40 7e55ae2 a1a096d f6e551c a1a096d ad85a12 59f3278 7e55ae2 936692d 7e55ae2 936692d 2639902 7e55ae2 a53de3c 936692d 7e55ae2 1a611b9 8b1bbeb 7e55ae2 a1a096d 7e55ae2 a1a096d 7e55ae2 a1a096d 7e55ae2 ad85a12 a1a096d 7e55ae2 a1a096d ad85a12 7e55ae2 a53de3c a1a096d 59f3278 a1a096d 7e55ae2 a1a096d 1a611b9 a1a096d 1a611b9 a1a096d 1a611b9 a57b988 095998d 67af08d 095998d a1a096d a53de3c 095998d a1a096d 095998d a1a096d 7e55ae2 a1a096d a53de3c a1a096d 7e55ae2 a1a096d 7e55ae2 a1a096d 7e55ae2 a1a096d 7e55ae2 a1a096d 7e55ae2 a1a096d 7e55ae2 a53de3c a1a096d 7e55ae2 a1a096d 7e55ae2 a53de3c a1a096d 7e55ae2 c5da27e 7e55ae2 a1a096d c5da27e a1a096d 7e55ae2 a1a096d c5da27e a1a096d aa559b4 8c16b9e fe5520f 7e55ae2 fe5520f 7e55ae2 26faa43 7e55ae2 26faa43 7e55ae2 a1a096d 26faa43 7e55ae2 7771dd9 a71a831 55e3db0 abd27cc 7e55ae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from datetime import datetime
import shutil
import gc
import re
import torch
from typing import List, Tuple, Dict
from concurrent.futures import ThreadPoolExecutor, as_completed
# Directories
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
# Paths
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
PROMPT_OVERHEAD = 300
BATCH_SIZE = 2
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet in xls.sheet_names:
try:
df = xls.parse(sheet).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
line = " | ".join(non_empty)
if len(line) > 15:
all_text.append(f"[{sheet}] {line}")
return "\n".join(all_text)
def split_text(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, tokens = [], [], 0
for line in text.split("\n"):
tks = estimate_tokens(line)
if tokens + tks > effective_limit:
if current:
chunks.append("\n".join(current))
current, tokens = [line], tks
else:
current.append(line)
tokens += tks
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
return [chunks[i:i + batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def analyze_batches(agent, batches: List[List[str]], max_workers: int = 3) -> List[str]:
results = []
def process_single_batch(batch):
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
response = ""
try:
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=4096,
max_token=131072,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
response += m.content
elif hasattr(r, "content"):
response += r.content
except Exception as e:
response = f"β Error: {str(e)}"
return clean_response(response)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(process_single_batch, batch) for batch in batches]
for future in as_completed(futures):
results.append(future.result())
return results
def generate_final_summary(agent, combined: str) -> str:
final_prompt = f"""Summarize the following clinical summaries into a final medical report:\n\n{combined}"""
response = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
response += m.content
elif hasattr(r, "content"):
response += r.content
return clean_response(response)
def process_file(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
if not file or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file."})
return messages, None
messages.append({"role": "user", "content": f"π Processing file: {file.name}"})
try:
extracted_text = extract_text_from_excel(file.name)
chunks = split_text(extracted_text)
batches = batch_chunks(chunks)
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
batch_outputs = analyze_batches(agent, batches)
valid_outputs = [res for res in batch_outputs if not res.startswith("β")]
if not valid_outputs:
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
return messages, None
summary = generate_final_summary(agent, "\n\n".join(valid_outputs))
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, "w", encoding="utf-8") as f:
f.write(f"# π§ Final Medical Report\n\n{summary}")
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{summary}"})
messages.append({"role": "assistant", "content": f"β
Saved report: {os.path.basename(report_path)}"})
return messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
return messages, None
def create_ui(agent):
with gr.Blocks(css="""
html, body { background-color: #0e1621; color: #e0e0e0; }
button { background: #007bff; color: white; border-radius: 8px; padding: 8px 16px; }
.gr-chatbot { background: #1b2533; border: 1px solid #2a2f45; border-radius: 16px; padding: 10px; }
""") as demo:
gr.Markdown("""## π§ CPS: Clinical Patient Support Assistant""")
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("π§ Analyze File")
download = gr.File(label="Download Report", visible=False)
state = gr.State([])
def handle_analyze(file, chat_state):
messages, report_path = process_file(agent, file, chat_state)
return messages, gr.update(visible=bool(report_path), value=report_path), messages
analyze_btn.click(fn=handle_analyze, inputs=[upload, state], outputs=[chatbot, download, state])
return demo
if __name__ == "__main__":
agent = init_agent()
ui = create_ui(agent)
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|