File size: 1,953 Bytes
b2d71fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
import timm
from huggingface_hub import PyTorchModelHubMixin



class TwoLayerNN(nn.Module, PyTorchModelHubMixin):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(TwoLayerNN, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim, output_dim)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.sigmoid(out)
        return out



classifier = TwoLayerNN.from_pretrained("Robzy/job-classifier", input_dim=384, hidden_dim=128, output_dim=1)
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
embedding_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")

    
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

def infer(text):
    
    encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')

    with torch.no_grad():
        model_output = embedding_model(**encoded_input)
        
    sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
    sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
    
    output = classifier(sentence_embeddings)
    return output.item()   


demo = gr.Interface(fn=infer, inputs="text", outputs="text")
gr.Textbox(placeholder="Enter job description here", label="Job Description")
demo.launch()