Spaces:
Sleeping
Sleeping
final
Browse files- app.py +55 -0
- browser.py +150 -0
- job-search.py +35 -0
- main.ipynb +382 -0
- pyproject.toml +38 -0
- requirements.txt +10 -0
- uv.lock +0 -0
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import timm
|
8 |
+
from huggingface_hub import PyTorchModelHubMixin
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class TwoLayerNN(nn.Module, PyTorchModelHubMixin):
|
13 |
+
def __init__(self, input_dim, hidden_dim, output_dim):
|
14 |
+
super(TwoLayerNN, self).__init__()
|
15 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
16 |
+
self.relu = nn.ReLU()
|
17 |
+
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
18 |
+
self.sigmoid = nn.Sigmoid()
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
out = self.fc1(x)
|
22 |
+
out = self.relu(out)
|
23 |
+
out = self.fc2(out)
|
24 |
+
out = self.sigmoid(out)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
classifier = TwoLayerNN.from_pretrained("Robzy/job-classifier", input_dim=384, hidden_dim=128, output_dim=1)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
31 |
+
embedding_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
32 |
+
|
33 |
+
|
34 |
+
def mean_pooling(model_output, attention_mask):
|
35 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
36 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
37 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
38 |
+
|
39 |
+
def infer(text):
|
40 |
+
|
41 |
+
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
model_output = embedding_model(**encoded_input)
|
45 |
+
|
46 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
47 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
48 |
+
|
49 |
+
output = classifier(sentence_embeddings)
|
50 |
+
return output.item()
|
51 |
+
|
52 |
+
|
53 |
+
demo = gr.Interface(fn=infer, inputs="text", outputs="text")
|
54 |
+
gr.Textbox(placeholder="Enter job description here", label="Job Description")
|
55 |
+
demo.launch()
|
browser.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from time import sleep
|
3 |
+
|
4 |
+
import helium
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from PIL import Image
|
7 |
+
from selenium import webdriver
|
8 |
+
from selenium.webdriver.common.by import By
|
9 |
+
from selenium.webdriver.common.keys import Keys
|
10 |
+
|
11 |
+
from smolagents import CodeAgent, tool
|
12 |
+
from smolagents.agents import ActionStep
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
|
18 |
+
@tool
|
19 |
+
def search_item_ctrl_f(text: str, nth_result: int = 1) -> str:
|
20 |
+
"""
|
21 |
+
Searches for text on the current page via Ctrl + F and jumps to the nth occurrence.
|
22 |
+
Args:
|
23 |
+
text: The text to search for
|
24 |
+
nth_result: Which occurrence to jump to (default: 1)
|
25 |
+
"""
|
26 |
+
elements = driver.find_elements(By.XPATH, f"//*[contains(text(), '{text}')]")
|
27 |
+
if nth_result > len(elements):
|
28 |
+
raise Exception(f"Match n°{nth_result} not found (only {len(elements)} matches found)")
|
29 |
+
result = f"Found {len(elements)} matches for '{text}'."
|
30 |
+
elem = elements[nth_result - 1]
|
31 |
+
driver.execute_script("arguments[0].scrollIntoView(true);", elem)
|
32 |
+
result += f"Focused on element {nth_result} of {len(elements)}"
|
33 |
+
return result
|
34 |
+
|
35 |
+
@tool
|
36 |
+
def go_back() -> None:
|
37 |
+
"""Goes back to previous page."""
|
38 |
+
driver.back()
|
39 |
+
|
40 |
+
@tool
|
41 |
+
def close_popups() -> str:
|
42 |
+
"""
|
43 |
+
Closes any visible modal or pop-up on the page. Use this to dismiss pop-up windows!
|
44 |
+
This does not work on cookie consent banners.
|
45 |
+
"""
|
46 |
+
webdriver.ActionChains(driver).send_keys(Keys.ESCAPE).perform()
|
47 |
+
|
48 |
+
|
49 |
+
# Configure Chrome options
|
50 |
+
chrome_options = webdriver.ChromeOptions()
|
51 |
+
chrome_options.add_argument("--force-device-scale-factor=1")
|
52 |
+
chrome_options.add_argument("--window-size=1000,1350")
|
53 |
+
chrome_options.add_argument("--disable-pdf-viewer")
|
54 |
+
chrome_options.add_argument("--window-position=0,0")
|
55 |
+
|
56 |
+
# Initialize the browser
|
57 |
+
driver = helium.start_chrome(headless=False, options=chrome_options)
|
58 |
+
|
59 |
+
# Set up screenshot callback
|
60 |
+
def save_screenshot(memory_step: ActionStep, agent: CodeAgent) -> None:
|
61 |
+
sleep(1.0) # Let JavaScript animations happen before taking the screenshot
|
62 |
+
driver = helium.get_driver()
|
63 |
+
current_step = memory_step.step_number
|
64 |
+
if driver is not None:
|
65 |
+
for previous_memory_step in agent.memory.steps: # Remove previous screenshots for lean processing
|
66 |
+
if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= current_step - 2:
|
67 |
+
previous_memory_step.observations_images = None
|
68 |
+
png_bytes = driver.get_screenshot_as_png()
|
69 |
+
image = Image.open(BytesIO(png_bytes))
|
70 |
+
print(f"Captured a browser screenshot: {image.size} pixels")
|
71 |
+
memory_step.observations_images = [image.copy()] # Create a copy to ensure it persists
|
72 |
+
|
73 |
+
# Update observations with current URL
|
74 |
+
url_info = f"Current url: {driver.current_url}"
|
75 |
+
memory_step.observations = (
|
76 |
+
url_info if memory_step.observations is None else memory_step.observations + "\n" + url_info
|
77 |
+
)
|
78 |
+
|
79 |
+
from smolagents import HfApiModel
|
80 |
+
|
81 |
+
# Initialize the model
|
82 |
+
model_id = "meta-llama/Llama-3.3-70B-Instruct" # You can change this to your preferred model
|
83 |
+
model = HfApiModel(model_id)
|
84 |
+
|
85 |
+
# Create the agent
|
86 |
+
agent = CodeAgent(
|
87 |
+
tools=[go_back, close_popups, search_item_ctrl_f],
|
88 |
+
model=model,
|
89 |
+
additional_authorized_imports=["helium"],
|
90 |
+
step_callbacks=[save_screenshot],
|
91 |
+
max_steps=20,
|
92 |
+
verbosity_level=2,
|
93 |
+
)
|
94 |
+
|
95 |
+
# Import helium for the agent
|
96 |
+
agent.python_executor("from helium import *", agent.state)
|
97 |
+
|
98 |
+
helium_instructions = """
|
99 |
+
You can use helium to access websites. Don't bother about the helium driver, it's already managed.
|
100 |
+
We've already ran "from helium import *"
|
101 |
+
Then you can go to pages!
|
102 |
+
Code:
|
103 |
+
```py
|
104 |
+
go_to('github.com/trending')
|
105 |
+
```<end_code>
|
106 |
+
|
107 |
+
You can directly click clickable elements by inputting the text that appears on them.
|
108 |
+
Code:
|
109 |
+
```py
|
110 |
+
click("Top products")
|
111 |
+
```<end_code>
|
112 |
+
|
113 |
+
If it's a link:
|
114 |
+
Code:
|
115 |
+
```py
|
116 |
+
click(Link("Top products"))
|
117 |
+
```<end_code>
|
118 |
+
|
119 |
+
If you try to interact with an element and it's not found, you'll get a LookupError.
|
120 |
+
In general stop your action after each button click to see what happens on your screenshot.
|
121 |
+
Never try to login in a page.
|
122 |
+
|
123 |
+
To scroll up or down, use scroll_down or scroll_up with as an argument the number of pixels to scroll from.
|
124 |
+
Code:
|
125 |
+
```py
|
126 |
+
scroll_down(num_pixels=1200) # This will scroll one viewport down
|
127 |
+
```<end_code>
|
128 |
+
|
129 |
+
When you have pop-ups with a cross icon to close, don't try to click the close icon by finding its element or targeting an 'X' element (this most often fails).
|
130 |
+
Just use your built-in tool `close_popups` to close them:
|
131 |
+
Code:
|
132 |
+
```py
|
133 |
+
close_popups()
|
134 |
+
```<end_code>
|
135 |
+
|
136 |
+
You can use .exists() to check for the existence of an element. For example:
|
137 |
+
Code:
|
138 |
+
```py
|
139 |
+
if Text('Accept cookies?').exists():
|
140 |
+
click('I accept')
|
141 |
+
```<end_code>
|
142 |
+
"""
|
143 |
+
|
144 |
+
search_request = """
|
145 |
+
Please navigate to https://en.wikipedia.org/wiki/Chicago and give me a sentence containing the word "1992" that mentions a construction accident.
|
146 |
+
"""
|
147 |
+
|
148 |
+
agent_output = agent.run(search_request + helium_instructions)
|
149 |
+
print("Final output:")
|
150 |
+
print(agent_output)
|
job-search.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
url = "https://jobsearch.api.jobtechdev.se/search"
|
4 |
+
|
5 |
+
response = requests.get(url)
|
6 |
+
|
7 |
+
if response.status_code == 200:
|
8 |
+
data = response.json()
|
9 |
+
print(data)
|
10 |
+
else:
|
11 |
+
print(f"Failed to retrieve data: {response.status_code}")
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
{
|
16 |
+
"hits": [
|
17 |
+
{
|
18 |
+
"id": "1",
|
19 |
+
"headline": "Data Scientist",
|
20 |
+
"description": {"text": "We are looking for a data scientist to join our team.",
|
21 |
+
"text-formatted": "text_formatted"},
|
22 |
+
"location": "Stockholm",
|
23 |
+
"company": "Company A"
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"id": "2",
|
27 |
+
"headline": "Software Engineer",
|
28 |
+
"description": {"text": "We are looking for a data scientist to join our team.",
|
29 |
+
"text-formatted": "text_formatted"},
|
30 |
+
"location": "Gothenburg",
|
31 |
+
"company": "Company B"
|
32 |
+
},
|
33 |
+
...
|
34 |
+
]
|
35 |
+
}
|
main.ipynb
ADDED
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"import torch.nn.functional as F\n",
|
11 |
+
"from transformers import AutoTokenizer, AutoModel\n",
|
12 |
+
"import os\n",
|
13 |
+
"import torch\n",
|
14 |
+
"import torch.nn as nn\n",
|
15 |
+
"import torch.optim as optim\n",
|
16 |
+
"import torch.nn.functional as F\n",
|
17 |
+
"from huggingface_hub import PyTorchModelHubMixin"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 4,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# Load model directly\n",
|
27 |
+
" \n",
|
28 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"sentence-transformers/all-MiniLM-L6-v2\")\n",
|
29 |
+
"model = AutoModel.from_pretrained(\"sentence-transformers/all-MiniLM-L6-v2\")"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 5,
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [
|
37 |
+
{
|
38 |
+
"name": "stdout",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"43\n"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"import os\n",
|
47 |
+
"\n",
|
48 |
+
"# Directory containing the job files\n",
|
49 |
+
"jobs_dir = 'jobs'\n",
|
50 |
+
"\n",
|
51 |
+
"# List to store the contents of the txt files with labels\n",
|
52 |
+
"dataset = []\n",
|
53 |
+
"\n",
|
54 |
+
"# Walk through the directory\n",
|
55 |
+
"for root, dirs, files in os.walk(jobs_dir):\n",
|
56 |
+
" for file in files:\n",
|
57 |
+
" if file.endswith('.txt'):\n",
|
58 |
+
" file_path = os.path.join(root, file)\n",
|
59 |
+
" with open(file_path, 'r') as f:\n",
|
60 |
+
" txt = f.read()\n",
|
61 |
+
" label = 0 if 'disliked' in root else 1\n",
|
62 |
+
" dataset.append((txt, label))\n",
|
63 |
+
"\n",
|
64 |
+
"# Print the number of txt files\n",
|
65 |
+
"print(len(dataset))"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 6,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"import random\n",
|
75 |
+
"txts = [txt for txt, label in dataset]\n",
|
76 |
+
"labels = [label for txt, label in dataset]\n",
|
77 |
+
"\n",
|
78 |
+
"# Generate a list of indices and shuffle them\n",
|
79 |
+
"indices = list(range(len(txts)))\n",
|
80 |
+
"random.shuffle(indices)\n",
|
81 |
+
"\n",
|
82 |
+
"# Apply the shuffled indices to txts and labels\n",
|
83 |
+
"txts = [txts[i] for i in indices]\n",
|
84 |
+
"labels = [labels[i] for i in indices]"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 7,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"# Tokenize sentences\n",
|
94 |
+
"# text = [\"Hello, my dog is cute\", \"Hello, my cat is cute\"]\n",
|
95 |
+
"encoded_input = tokenizer(txts, padding=True, truncation=True, return_tensors='pt')\n",
|
96 |
+
"\n",
|
97 |
+
"# Compute token embeddings\n",
|
98 |
+
"with torch.no_grad():\n",
|
99 |
+
" model_output = model(**encoded_input)"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": 8,
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [],
|
107 |
+
"source": [
|
108 |
+
"def mean_pooling(model_output, attention_mask):\n",
|
109 |
+
" token_embeddings = model_output[0] #First element of model_output contains all token embeddings\n",
|
110 |
+
" input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()\n",
|
111 |
+
" return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)\n",
|
112 |
+
"\n",
|
113 |
+
"\n",
|
114 |
+
"# Perform pooling\n",
|
115 |
+
"sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])\n",
|
116 |
+
"\n",
|
117 |
+
"# Normalize embeddings\n",
|
118 |
+
"sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 9,
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [
|
126 |
+
{
|
127 |
+
"data": {
|
128 |
+
"text/plain": [
|
129 |
+
"torch.Size([43, 384])"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
"execution_count": 9,
|
133 |
+
"metadata": {},
|
134 |
+
"output_type": "execute_result"
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"sentence_embeddings.size()"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": 10,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [
|
146 |
+
{
|
147 |
+
"data": {
|
148 |
+
"text/plain": [
|
149 |
+
"[1,\n",
|
150 |
+
" 0,\n",
|
151 |
+
" 1,\n",
|
152 |
+
" 0,\n",
|
153 |
+
" 0,\n",
|
154 |
+
" 1,\n",
|
155 |
+
" 1,\n",
|
156 |
+
" 0,\n",
|
157 |
+
" 1,\n",
|
158 |
+
" 0,\n",
|
159 |
+
" 0,\n",
|
160 |
+
" 0,\n",
|
161 |
+
" 0,\n",
|
162 |
+
" 0,\n",
|
163 |
+
" 0,\n",
|
164 |
+
" 0,\n",
|
165 |
+
" 1,\n",
|
166 |
+
" 0,\n",
|
167 |
+
" 0,\n",
|
168 |
+
" 0,\n",
|
169 |
+
" 1,\n",
|
170 |
+
" 1,\n",
|
171 |
+
" 0,\n",
|
172 |
+
" 0,\n",
|
173 |
+
" 1,\n",
|
174 |
+
" 0,\n",
|
175 |
+
" 1,\n",
|
176 |
+
" 1,\n",
|
177 |
+
" 1,\n",
|
178 |
+
" 0,\n",
|
179 |
+
" 1,\n",
|
180 |
+
" 0,\n",
|
181 |
+
" 0,\n",
|
182 |
+
" 0,\n",
|
183 |
+
" 0,\n",
|
184 |
+
" 0,\n",
|
185 |
+
" 0,\n",
|
186 |
+
" 0,\n",
|
187 |
+
" 1,\n",
|
188 |
+
" 0,\n",
|
189 |
+
" 0,\n",
|
190 |
+
" 0,\n",
|
191 |
+
" 0]"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
"execution_count": 10,
|
195 |
+
"metadata": {},
|
196 |
+
"output_type": "execute_result"
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"source": [
|
200 |
+
"labels"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 11,
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [
|
208 |
+
{
|
209 |
+
"name": "stdout",
|
210 |
+
"output_type": "stream",
|
211 |
+
"text": [
|
212 |
+
"Epoch [5/20], Loss: 0.6616\n",
|
213 |
+
"Epoch [10/20], Loss: 0.6401\n",
|
214 |
+
"Epoch [15/20], Loss: 0.6221\n",
|
215 |
+
"Epoch [20/20], Loss: 0.6074\n",
|
216 |
+
"Training complete.\n"
|
217 |
+
]
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"source": [
|
221 |
+
"\n",
|
222 |
+
"\n",
|
223 |
+
"# Define the neural network\n",
|
224 |
+
"class TwoLayerNN(nn.Module, PyTorchModelHubMixin):\n",
|
225 |
+
" def __init__(self, input_dim, hidden_dim, output_dim):\n",
|
226 |
+
" super(TwoLayerNN, self).__init__()\n",
|
227 |
+
" self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
|
228 |
+
" self.relu = nn.ReLU()\n",
|
229 |
+
" self.fc2 = nn.Linear(hidden_dim, output_dim)\n",
|
230 |
+
" self.sigmoid = nn.Sigmoid()\n",
|
231 |
+
"\n",
|
232 |
+
" def forward(self, x):\n",
|
233 |
+
" out = self.fc1(x)\n",
|
234 |
+
" out = self.relu(out)\n",
|
235 |
+
" out = self.fc2(out)\n",
|
236 |
+
" out = self.sigmoid(out)\n",
|
237 |
+
" return out\n",
|
238 |
+
"\n",
|
239 |
+
"# Hyperparameters\n",
|
240 |
+
"input_dim = sentence_embeddings.size(1)\n",
|
241 |
+
"hidden_dim = 128\n",
|
242 |
+
"output_dim = 1\n",
|
243 |
+
"num_epochs = 20\n",
|
244 |
+
"learning_rate = 0.001\n",
|
245 |
+
"\n",
|
246 |
+
"# Model, loss function, and optimizer\n",
|
247 |
+
"classifier = TwoLayerNN(input_dim, hidden_dim, output_dim)\n",
|
248 |
+
"criterion = nn.BCELoss()\n",
|
249 |
+
"optimizer = optim.Adam(classifier.parameters(), lr=learning_rate)\n",
|
250 |
+
"\n",
|
251 |
+
"# Convert labels to tensor\n",
|
252 |
+
"labels_tensor = torch.tensor(labels, dtype=torch.float32).unsqueeze(1)\n",
|
253 |
+
"\n",
|
254 |
+
"# Training loop\n",
|
255 |
+
"for epoch in range(num_epochs):\n",
|
256 |
+
" classifier.train()\n",
|
257 |
+
" optimizer.zero_grad()\n",
|
258 |
+
" outputs = classifier(sentence_embeddings)\n",
|
259 |
+
" loss = criterion(outputs, labels_tensor)\n",
|
260 |
+
" loss.backward()\n",
|
261 |
+
" optimizer.step()\n",
|
262 |
+
"\n",
|
263 |
+
" if (epoch+1) % 5 == 0:\n",
|
264 |
+
" print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')\n",
|
265 |
+
"\n",
|
266 |
+
"print(\"Training complete.\")"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 16,
|
272 |
+
"metadata": {},
|
273 |
+
"outputs": [
|
274 |
+
{
|
275 |
+
"name": "stdout",
|
276 |
+
"output_type": "stream",
|
277 |
+
"text": [
|
278 |
+
"Job description: A very fun job with data science and machine learning\n",
|
279 |
+
"Prediction: liked (score: 0.5050)\n"
|
280 |
+
]
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"source": [
|
284 |
+
"# Inference\n",
|
285 |
+
"classifier.eval()\n",
|
286 |
+
"job_description = \"A very fun job with data science and machine learning\"\n",
|
287 |
+
"encoded_input = tokenizer(job_description, padding=True, truncation=True, return_tensors='pt')\n",
|
288 |
+
"with torch.no_grad():\n",
|
289 |
+
" model_output = model(**encoded_input)\n",
|
290 |
+
"sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask'])\n",
|
291 |
+
"sentence_embedding = F.normalize(sentence_embedding, p=2, dim=1)\n",
|
292 |
+
"output = classifier(sentence_embedding)\n",
|
293 |
+
"prediction = 'liked' if output.item() > 0.5 else 'disliked'\n",
|
294 |
+
"print(f\"Job description: {job_description}\")\n",
|
295 |
+
"print(f\"Prediction: {prediction} (score: {output.item():.4f})\")"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": 13,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"from huggingface_hub import HfApi, HfFolder\n",
|
305 |
+
"\n",
|
306 |
+
"# Save the model and tokenizer\n",
|
307 |
+
"classifier.save_pretrained(\"job-classifier\")\n",
|
308 |
+
"tokenizer.save_pretrained(\"job-classifier\")\n",
|
309 |
+
"\n",
|
310 |
+
"# Initialize the HfApi\n",
|
311 |
+
"api = HfApi()"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": 14,
|
317 |
+
"metadata": {},
|
318 |
+
"outputs": [
|
319 |
+
{
|
320 |
+
"name": "stderr",
|
321 |
+
"output_type": "stream",
|
322 |
+
"text": [
|
323 |
+
"No files have been modified since last commit. Skipping to prevent empty commit.\n"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"data": {
|
328 |
+
"text/plain": [
|
329 |
+
"CommitInfo(commit_url='https://huggingface.co/Robzy/job-classifier/commit/fbe58c86c6d0859305675ac93f155fef7462a58d', commit_message='Upload model', commit_description='', oid='fbe58c86c6d0859305675ac93f155fef7462a58d', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Robzy/job-classifier', endpoint='https://huggingface.co', repo_type='model', repo_id='Robzy/job-classifier'), pr_revision=None, pr_num=None)"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
"execution_count": 14,
|
333 |
+
"metadata": {},
|
334 |
+
"output_type": "execute_result"
|
335 |
+
}
|
336 |
+
],
|
337 |
+
"source": [
|
338 |
+
"model.push_to_hub(\"Robzy/job-classifier\")"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 17,
|
344 |
+
"metadata": {},
|
345 |
+
"outputs": [],
|
346 |
+
"source": [
|
347 |
+
"input_dim = 384\n",
|
348 |
+
"hidden_dim = 128\n",
|
349 |
+
"output_dim = 1\n",
|
350 |
+
"classifier = TwoLayerNN.from_pretrained(\"Robzy/job-classifier\", input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim)"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": null,
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": []
|
359 |
+
}
|
360 |
+
],
|
361 |
+
"metadata": {
|
362 |
+
"kernelspec": {
|
363 |
+
"display_name": ".venv",
|
364 |
+
"language": "python",
|
365 |
+
"name": "python3"
|
366 |
+
},
|
367 |
+
"language_info": {
|
368 |
+
"codemirror_mode": {
|
369 |
+
"name": "ipython",
|
370 |
+
"version": 3
|
371 |
+
},
|
372 |
+
"file_extension": ".py",
|
373 |
+
"mimetype": "text/x-python",
|
374 |
+
"name": "python",
|
375 |
+
"nbconvert_exporter": "python",
|
376 |
+
"pygments_lexer": "ipython3",
|
377 |
+
"version": "3.12.8"
|
378 |
+
}
|
379 |
+
},
|
380 |
+
"nbformat": 4,
|
381 |
+
"nbformat_minor": 2
|
382 |
+
}
|
pyproject.toml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "hf-workshop"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"gradio>=5.21.0",
|
9 |
+
"helium>=5.1.1",
|
10 |
+
"llama-index>=0.12.24",
|
11 |
+
"numpy>=2.2.3",
|
12 |
+
"pillow>=11.1.0",
|
13 |
+
"scipy>=1.15.2",
|
14 |
+
"selenium>=4.29.0",
|
15 |
+
"smolagents>=1.10.0",
|
16 |
+
"timm>=1.0.15",
|
17 |
+
"torch>=2.6.0",
|
18 |
+
"torchvision>=0.21.0",
|
19 |
+
"transformers>=4.49.0",
|
20 |
+
]
|
21 |
+
|
22 |
+
[dependency-groups]
|
23 |
+
dev = [
|
24 |
+
"ipykernel>=6.29.5",
|
25 |
+
]
|
26 |
+
|
27 |
+
[tool.uv.sources]
|
28 |
+
torch = [
|
29 |
+
{ index = "pytorch-cpu" },
|
30 |
+
]
|
31 |
+
torchvision = [
|
32 |
+
{ index = "pytorch-cpu" },
|
33 |
+
]
|
34 |
+
|
35 |
+
[[tool.uv.index]]
|
36 |
+
name = "pytorch-cpu"
|
37 |
+
url = "https://download.pytorch.org/whl/cpu"
|
38 |
+
explicit = true
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
smolagents
|
2 |
+
selenium
|
3 |
+
helium
|
4 |
+
pillow
|
5 |
+
gradio
|
6 |
+
transformers
|
7 |
+
numpy
|
8 |
+
sentence-transformers
|
9 |
+
torch
|
10 |
+
timm
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|