File size: 5,899 Bytes
c7e9d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c36b
5aefb03
 
c7e9d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c36b
c7e9d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c36b
c7e9d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112c36b
c7e9d11
 
 
 
 
112c36b
c7e9d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb94498
c7e9d11
 
 
 
 
112c36b
c7e9d11
 
 
 
 
 
 
112c36b
c7e9d11
 
112c36b
c7e9d11
 
 
112c36b
 
c7e9d11
 
 
 
112c36b
c7e9d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from dataclasses import dataclass
from pathlib import Path

import librosa
import torch
import torch.nn.functional as F
from huggingface_hub import hf_hub_download

from .models.t3 import T3
from .models.s3tokenizer import S3_SR, drop_invalid_tokens
from .models.s3gen import S3GEN_SR, S3Gen
from .models.tokenizers import EnTokenizer
from .models.voice_encoder import VoiceEncoder
from .models.t3.modules.cond_enc import T3Cond


REPO_ID = "ResembleAI/Orator"


@dataclass
class Conditionals:
    """
    Conditionals for T3 and S3Gen
    - T3 conditionals:
        - speaker_emb
        - clap_emb
        - cond_prompt_speech_tokens
        - cond_prompt_speech_emb
        - emotion_adv
    - S3Gen conditionals:
        - prompt_token
        - prompt_token_len
        - prompt_feat
        - prompt_feat_len
        - embedding
    """
    t3: T3Cond
    gen: dict

    def to(self, device):
        self.t3 = self.t3.to(device=device)
        for k, v in self.gen.items():
            if torch.is_tensor(v):
                self.gen[k] = v.to(device=device)
        return self

    def save(self, fpath: Path):
        arg_dict = dict(
            t3=self.t3.__dict__,
            gen=self.gen
        )
        torch.save(arg_dict, fpath)

    @classmethod
    def load(cls, fpath, map_location="cpu"):
        kwargs = torch.load(fpath, map_location=map_location, weights_only=True)
        return cls(T3Cond(**kwargs['t3']), kwargs['gen'])


class OratorTTS:
    ENC_COND_LEN = 6 * S3_SR
    DEC_COND_LEN = 10 * S3GEN_SR

    def __init__(
        self,
        t3: T3,
        s3gen: S3Gen,
        ve: VoiceEncoder,
        tokenizer: EnTokenizer,
        device: str,
        conds: Conditionals = None,
    ):
        self.sr = S3GEN_SR  # sample rate of synthesized audio
        self.t3 = t3
        self.s3gen = s3gen
        self.ve = ve
        self.tokenizer = tokenizer
        self.device = device
        self.conds = conds

    @classmethod
    def from_local(cls, ckpt_dir, device) -> 'OratorTTS':
        ckpt_dir = Path(ckpt_dir)

        ve = VoiceEncoder()
        ve.load_state_dict(
            torch.load(ckpt_dir / "ve.pt")
        )
        ve.to(device).eval()

        t3 = T3()
        t3.load_state_dict(
            torch.load(ckpt_dir / "t3.pt")
        )
        t3.to(device).eval()

        s3gen = S3Gen()
        s3gen.load_state_dict(
            torch.load(ckpt_dir / "s3gen.pt")
        )
        s3gen.to(device).eval()

        tokenizer = EnTokenizer(
            str(ckpt_dir / "tokenizer.json")
        )

        conds = None
        if (builtin_voice := ckpt_dir / "conds.pt").exists():
            conds = Conditionals.load(builtin_voice).to(device)

        return cls(t3, s3gen, ve, tokenizer, device, conds=conds)

    @classmethod
    def from_pretrained(cls, device) -> 'OratorTTS':
        for fpath in ["ve.pt", "t3.pt", "s3gen.pt", "tokenizer.json", "conds.pt"]:
            local_path = hf_hub_download(repo_id=REPO_ID, filename=fpath)

        return cls.from_local(Path(local_path).parent, device)

    def prepare_conditionals(self, wav_fpath, emotion_adv=0.5):
        ## Load reference wav
        s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR)

        s3_ref_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR)

        s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN]
        s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device)

        # Speech cond prompt tokens
        if plen := self.t3.hp.speech_cond_prompt_len:
            s3_tokzr = self.s3gen.tokenizer
            t3_cond_prompt_tokens, _ = s3_tokzr.forward([s3_ref_wav[:self.ENC_COND_LEN]], max_len=plen)
            t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device)

        # # Voice-encoder speaker embedding
        ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([s3_ref_wav], sample_rate=S3_SR))
        ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device)

        t3_cond = T3Cond(
            speaker_emb=ve_embed,
            cond_prompt_speech_tokens=t3_cond_prompt_tokens,
            emotion_adv=emotion_adv * torch.ones(1, 1, 1),
        ).to(device=self.device)
        self.conds = Conditionals(t3_cond, s3gen_ref_dict)

    def generate(
        self,
        text,
        audio_prompt_path=None,
        emotion_adv=0.5
    ):
        if audio_prompt_path:
            self.prepare_conditionals(audio_prompt_path, emotion_adv=emotion_adv)
        else:
            assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`"

        # Update emotion_adv if needed
        if emotion_adv != self.conds.t3.emotion_adv[0, 0, 0]:
            _cond: T3Cond = self.conds.t3
            self.conds.t3 = T3Cond(
                speaker_emb=_cond.speaker_emb,
                cond_prompt_speech_tokens=_cond.cond_prompt_speech_tokens,
                emotion_adv=emotion_adv * torch.ones(1, 1, 1),
            ).to(device=self.device)

        text_tokens = self.tokenizer.text_to_tokens(text).to(self.device)

        sot = self.t3.hp.start_text_token
        eot = self.t3.hp.stop_text_token
        text_tokens = F.pad(text_tokens, (1, 0), value=sot)
        text_tokens = F.pad(text_tokens, (0, 1), value=eot)

        with torch.inference_mode():
            speech_tokens = self.t3.inference(
                t3_cond=self.conds.t3,
                text_tokens=text_tokens,
                max_new_tokens=1000,  # TODO: use the value in config
            )

            # TODO: output becomes 1D
            speech_tokens = drop_invalid_tokens(speech_tokens)
            speech_tokens = speech_tokens.to(self.device)

            wav, _ = self.s3gen.inference(
                speech_tokens=speech_tokens,
                ref_dict=self.conds.gen,
            )

        return wav.detach().cpu()