Spaces:
Runtime error
Runtime error
Commit
Β·
112c36b
1
Parent(s):
128ae2b
revert to code before inference bug
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- chatterbox/src/chatterbox/__init__.py +0 -2
- chatterbox/src/chatterbox/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/__pycache__/tts.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/__pycache__/vc.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/s3gen/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/s3gen/__pycache__/const.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/t3/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/t3/inference/__pycache__/alignment_stream_analyzer.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/tokenizers/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/voice_encoder/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/chatterbox/models/voice_encoder/__pycache__/config.cpython-311.pyc +0 -0
- chatterbox/src/orator/__init__.py +1 -0
- chatterbox/src/orator/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/orator/__pycache__/tts.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox/models/s3gen/transformer/__init__.py β orator/model_checkpoints.py} +0 -0
- chatterbox/src/orator/models/bigvgan/__pycache__/activations.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/bigvgan/__pycache__/bigvgan.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/bigvgan/activations.py +120 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/__init__.py +6 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/act.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/filter.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/resample.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/act.py +28 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/filter.py +95 -0
- chatterbox/src/orator/models/bigvgan/alias_free_torch/resample.py +55 -0
- chatterbox/src/orator/models/bigvgan/bigvgan.py +212 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__init__.py +0 -0
- chatterbox/src/orator/models/s3gen/__pycache__/__init__.cpython-311.pyc +0 -0
- chatterbox/src/orator/models/s3gen/__pycache__/const.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/decoder.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/f0_predictor.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/flow.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/flow_matching.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/hifigan.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/s3gen.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/xvector.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/const.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/decoder.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/f0_predictor.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/flow.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/flow_matching.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/hifigan.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/__pycache__/decoder.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/__pycache__/flow_matching.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/__pycache__/transformer.cpython-311.pyc +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/decoder.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/flow_matching.py +0 -0
- chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/text_encoder.py +0 -0
chatterbox/src/chatterbox/__init__.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .tts import ChatterboxTTS
|
2 |
-
from .vc import ChatterboxVC
|
|
|
|
|
|
chatterbox/src/chatterbox/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (275 Bytes)
|
|
chatterbox/src/chatterbox/__pycache__/tts.cpython-311.pyc
DELETED
Binary file (12.5 kB)
|
|
chatterbox/src/chatterbox/__pycache__/vc.cpython-311.pyc
DELETED
Binary file (4.9 kB)
|
|
chatterbox/src/chatterbox/models/s3gen/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (294 Bytes)
|
|
chatterbox/src/chatterbox/models/s3gen/__pycache__/const.cpython-311.pyc
DELETED
Binary file (190 Bytes)
|
|
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (190 Bytes)
|
|
chatterbox/src/chatterbox/models/t3/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (218 Bytes)
|
|
chatterbox/src/chatterbox/models/t3/inference/__pycache__/alignment_stream_analyzer.cpython-311.pyc
DELETED
Binary file (7.08 kB)
|
|
chatterbox/src/chatterbox/models/tokenizers/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (242 Bytes)
|
|
chatterbox/src/chatterbox/models/voice_encoder/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (281 Bytes)
|
|
chatterbox/src/chatterbox/models/voice_encoder/__pycache__/config.cpython-311.pyc
DELETED
Binary file (859 Bytes)
|
|
chatterbox/src/orator/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .tts import OratorTTS
|
chatterbox/src/orator/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (212 Bytes). View file
|
|
chatterbox/src/orator/__pycache__/tts.cpython-311.pyc
ADDED
Binary file (9.98 kB). View file
|
|
chatterbox/src/{chatterbox/models/s3gen/transformer/__init__.py β orator/model_checkpoints.py}
RENAMED
File without changes
|
chatterbox/src/orator/models/bigvgan/__pycache__/activations.cpython-311.pyc
ADDED
Binary file (6.09 kB). View file
|
|
chatterbox/src/orator/models/bigvgan/__pycache__/bigvgan.cpython-311.pyc
ADDED
Binary file (13.3 kB). View file
|
|
chatterbox/src/orator/models/bigvgan/activations.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, sin, pow
|
6 |
+
from torch.nn import Parameter
|
7 |
+
|
8 |
+
|
9 |
+
class Snake(nn.Module):
|
10 |
+
'''
|
11 |
+
Implementation of a sine-based periodic activation function
|
12 |
+
Shape:
|
13 |
+
- Input: (B, C, T)
|
14 |
+
- Output: (B, C, T), same shape as the input
|
15 |
+
Parameters:
|
16 |
+
- alpha - trainable parameter
|
17 |
+
References:
|
18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
19 |
+
https://arxiv.org/abs/2006.08195
|
20 |
+
Examples:
|
21 |
+
>>> a1 = snake(256)
|
22 |
+
>>> x = torch.randn(256)
|
23 |
+
>>> x = a1(x)
|
24 |
+
'''
|
25 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
26 |
+
'''
|
27 |
+
Initialization.
|
28 |
+
INPUT:
|
29 |
+
- in_features: shape of the input
|
30 |
+
- alpha: trainable parameter
|
31 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
32 |
+
alpha will be trained along with the rest of your model.
|
33 |
+
'''
|
34 |
+
super(Snake, self).__init__()
|
35 |
+
self.in_features = in_features
|
36 |
+
|
37 |
+
# initialize alpha
|
38 |
+
self.alpha_logscale = alpha_logscale
|
39 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
40 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
41 |
+
else: # linear scale alphas initialized to ones
|
42 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
43 |
+
|
44 |
+
self.alpha.requires_grad = alpha_trainable
|
45 |
+
|
46 |
+
self.no_div_by_zero = 0.000000001
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
'''
|
50 |
+
Forward pass of the function.
|
51 |
+
Applies the function to the input elementwise.
|
52 |
+
Snake βΆ= x + 1/a * sin^2 (xa)
|
53 |
+
'''
|
54 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
55 |
+
if self.alpha_logscale:
|
56 |
+
alpha = torch.exp(alpha)
|
57 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
58 |
+
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class SnakeBeta(nn.Module):
|
63 |
+
'''
|
64 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
65 |
+
Shape:
|
66 |
+
- Input: (B, C, T)
|
67 |
+
- Output: (B, C, T), same shape as the input
|
68 |
+
Parameters:
|
69 |
+
- alpha - trainable parameter that controls frequency
|
70 |
+
- beta - trainable parameter that controls magnitude
|
71 |
+
References:
|
72 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
73 |
+
https://arxiv.org/abs/2006.08195
|
74 |
+
Examples:
|
75 |
+
>>> a1 = snakebeta(256)
|
76 |
+
>>> x = torch.randn(256)
|
77 |
+
>>> x = a1(x)
|
78 |
+
'''
|
79 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
80 |
+
'''
|
81 |
+
Initialization.
|
82 |
+
INPUT:
|
83 |
+
- in_features: shape of the input
|
84 |
+
- alpha - trainable parameter that controls frequency
|
85 |
+
- beta - trainable parameter that controls magnitude
|
86 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
87 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
88 |
+
alpha will be trained along with the rest of your model.
|
89 |
+
'''
|
90 |
+
super(SnakeBeta, self).__init__()
|
91 |
+
self.in_features = in_features
|
92 |
+
|
93 |
+
# initialize alpha
|
94 |
+
self.alpha_logscale = alpha_logscale
|
95 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
96 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
97 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
98 |
+
else: # linear scale alphas initialized to ones
|
99 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
100 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
101 |
+
|
102 |
+
self.alpha.requires_grad = alpha_trainable
|
103 |
+
self.beta.requires_grad = alpha_trainable
|
104 |
+
|
105 |
+
self.no_div_by_zero = 0.000000001
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
'''
|
109 |
+
Forward pass of the function.
|
110 |
+
Applies the function to the input elementwise.
|
111 |
+
SnakeBeta βΆ= x + 1/b * sin^2 (xa)
|
112 |
+
'''
|
113 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
114 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
115 |
+
if self.alpha_logscale:
|
116 |
+
alpha = torch.exp(alpha)
|
117 |
+
beta = torch.exp(beta)
|
118 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
119 |
+
|
120 |
+
return x
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from .filter import *
|
5 |
+
from .resample import *
|
6 |
+
from .act import *
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (281 Bytes). View file
|
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/act.cpython-311.pyc
ADDED
Binary file (1.67 kB). View file
|
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/filter.cpython-311.pyc
ADDED
Binary file (4.51 kB). View file
|
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/__pycache__/resample.cpython-311.pyc
ADDED
Binary file (3.43 kB). View file
|
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/act.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from .resample import UpSample1d, DownSample1d
|
7 |
+
|
8 |
+
|
9 |
+
class Activation1d(nn.Module):
|
10 |
+
def __init__(self,
|
11 |
+
activation,
|
12 |
+
up_ratio: int = 2,
|
13 |
+
down_ratio: int = 2,
|
14 |
+
up_kernel_size: int = 12,
|
15 |
+
down_kernel_size: int = 12):
|
16 |
+
super().__init__()
|
17 |
+
self.up_ratio = up_ratio
|
18 |
+
self.down_ratio = down_ratio
|
19 |
+
self.act = activation
|
20 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
21 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
22 |
+
|
23 |
+
# x: [B, C, T]
|
24 |
+
def forward(self, x):
|
25 |
+
x = self.upsample(x)
|
26 |
+
x = self.act(x)
|
27 |
+
x = self.downsample(x)
|
28 |
+
return x
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/filter.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
if 'sinc' in dir(torch):
|
12 |
+
sinc = torch.sinc
|
13 |
+
else:
|
14 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
15 |
+
# https://adefossez.github.io/julius/julius/core.html
|
16 |
+
# LICENSE is in incl_licenses directory.
|
17 |
+
def sinc(x: torch.Tensor):
|
18 |
+
"""
|
19 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
20 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
21 |
+
"""
|
22 |
+
return torch.where(x == 0,
|
23 |
+
torch.tensor(1., device=x.device, dtype=x.dtype),
|
24 |
+
torch.sin(math.pi * x) / math.pi / x)
|
25 |
+
|
26 |
+
|
27 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
28 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
29 |
+
# LICENSE is in incl_licenses directory.
|
30 |
+
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
31 |
+
even = (kernel_size % 2 == 0)
|
32 |
+
half_size = kernel_size // 2
|
33 |
+
|
34 |
+
#For kaiser window
|
35 |
+
delta_f = 4 * half_width
|
36 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
37 |
+
if A > 50.:
|
38 |
+
beta = 0.1102 * (A - 8.7)
|
39 |
+
elif A >= 21.:
|
40 |
+
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
41 |
+
else:
|
42 |
+
beta = 0.
|
43 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
44 |
+
|
45 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
46 |
+
if even:
|
47 |
+
time = (torch.arange(-half_size, half_size) + 0.5)
|
48 |
+
else:
|
49 |
+
time = torch.arange(kernel_size) - half_size
|
50 |
+
if cutoff == 0:
|
51 |
+
filter_ = torch.zeros_like(time)
|
52 |
+
else:
|
53 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
54 |
+
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
55 |
+
# of the constant component in the input signal.
|
56 |
+
filter_ /= filter_.sum()
|
57 |
+
filter = filter_.view(1, 1, kernel_size)
|
58 |
+
|
59 |
+
return filter
|
60 |
+
|
61 |
+
|
62 |
+
class LowPassFilter1d(nn.Module):
|
63 |
+
def __init__(self,
|
64 |
+
cutoff=0.5,
|
65 |
+
half_width=0.6,
|
66 |
+
stride: int = 1,
|
67 |
+
padding: bool = True,
|
68 |
+
padding_mode: str = 'replicate',
|
69 |
+
kernel_size: int = 12):
|
70 |
+
# kernel_size should be even number for stylegan3 setup,
|
71 |
+
# in this implementation, odd number is also possible.
|
72 |
+
super().__init__()
|
73 |
+
if cutoff < -0.:
|
74 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
75 |
+
if cutoff > 0.5:
|
76 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.even = (kernel_size % 2 == 0)
|
79 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
80 |
+
self.pad_right = kernel_size // 2
|
81 |
+
self.stride = stride
|
82 |
+
self.padding = padding
|
83 |
+
self.padding_mode = padding_mode
|
84 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
85 |
+
self.register_buffer("filter", filter)
|
86 |
+
|
87 |
+
#input [B, C, T]
|
88 |
+
def forward(self, x):
|
89 |
+
_, C, _ = x.shape
|
90 |
+
|
91 |
+
if self.padding:
|
92 |
+
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
93 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
94 |
+
|
95 |
+
return out
|
chatterbox/src/orator/models/bigvgan/alias_free_torch/resample.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from .filter import LowPassFilter1d
|
8 |
+
from .filter import kaiser_sinc_filter1d
|
9 |
+
|
10 |
+
|
11 |
+
class UpSample1d(nn.Module):
|
12 |
+
def __init__(self, ratio=2, kernel_size=None):
|
13 |
+
super().__init__()
|
14 |
+
self.ratio = ratio
|
15 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
16 |
+
self.stride = ratio
|
17 |
+
self.pad = self.kernel_size // ratio - 1
|
18 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
19 |
+
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
20 |
+
filter = kaiser_sinc_filter1d(
|
21 |
+
cutoff=0.5 / ratio,
|
22 |
+
half_width=0.6 / ratio,
|
23 |
+
kernel_size=self.kernel_size
|
24 |
+
)
|
25 |
+
self.register_buffer("filter", filter)
|
26 |
+
|
27 |
+
# x: [B, C, T]
|
28 |
+
def forward(self, x):
|
29 |
+
_, C, _ = x.shape
|
30 |
+
|
31 |
+
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
32 |
+
x = self.ratio * F.conv_transpose1d(
|
33 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
34 |
+
)
|
35 |
+
x = x[..., self.pad_left:-self.pad_right]
|
36 |
+
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
class DownSample1d(nn.Module):
|
41 |
+
def __init__(self, ratio=2, kernel_size=None):
|
42 |
+
super().__init__()
|
43 |
+
self.ratio = ratio
|
44 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
45 |
+
self.lowpass = LowPassFilter1d(
|
46 |
+
cutoff=0.5 / ratio,
|
47 |
+
half_width=0.6 / ratio,
|
48 |
+
stride=ratio,
|
49 |
+
kernel_size=self.kernel_size
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
xx = self.lowpass(x)
|
54 |
+
|
55 |
+
return xx
|
chatterbox/src/orator/models/bigvgan/bigvgan.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
4 |
+
# LICENSE is in incl_licenses directory.
|
5 |
+
|
6 |
+
import logging
|
7 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
8 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
9 |
+
from torch.nn.utils.weight_norm import WeightNorm
|
10 |
+
|
11 |
+
from .activations import SnakeBeta
|
12 |
+
from .alias_free_torch import *
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
def get_padding(kernel_size, dilation=1):
|
22 |
+
return int((kernel_size*dilation - dilation)/2)
|
23 |
+
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
class AMPBlock1(torch.nn.Module):
|
32 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
33 |
+
super(AMPBlock1, self).__init__()
|
34 |
+
|
35 |
+
self.convs1 = nn.ModuleList([
|
36 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
37 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
38 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
39 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
40 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
41 |
+
padding=get_padding(kernel_size, dilation[2])))
|
42 |
+
])
|
43 |
+
self.convs1.apply(init_weights)
|
44 |
+
|
45 |
+
self.convs2 = nn.ModuleList([
|
46 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))),
|
47 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))),
|
48 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)))
|
49 |
+
])
|
50 |
+
self.convs2.apply(init_weights)
|
51 |
+
|
52 |
+
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
53 |
+
|
54 |
+
self.activations = nn.ModuleList([
|
55 |
+
Activation1d(activation=SnakeBeta(channels, alpha_logscale=True))
|
56 |
+
for _ in range(self.num_layers)
|
57 |
+
])
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
61 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
62 |
+
xt = a1(x)
|
63 |
+
xt = c1(xt)
|
64 |
+
xt = a2(xt)
|
65 |
+
xt = c2(xt)
|
66 |
+
x = xt + x
|
67 |
+
|
68 |
+
return x
|
69 |
+
|
70 |
+
def set_weight_norm(self, enabled: bool):
|
71 |
+
weight_norm_fn = weight_norm if enabled else remove_weight_norm
|
72 |
+
for l in self.convs1:
|
73 |
+
weight_norm_fn(l)
|
74 |
+
for l in self.convs2:
|
75 |
+
weight_norm_fn(l)
|
76 |
+
|
77 |
+
|
78 |
+
class BigVGAN(nn.Module):
|
79 |
+
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
80 |
+
|
81 |
+
# We've got a model in prod that has the wrong hparams for this. It's simpler to add this check than to
|
82 |
+
# redistribute the model.
|
83 |
+
ignore_state_dict_unexpected = ("cond_layer.*",)
|
84 |
+
|
85 |
+
def __init__(self):
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
input_dims = 80
|
89 |
+
|
90 |
+
upsample_rates = [10, 8, 4, 2]
|
91 |
+
upsample_kernel_sizes = [x * 2 for x in upsample_rates]
|
92 |
+
upsample_initial_channel = 1024
|
93 |
+
|
94 |
+
resblock_kernel_sizes = [3, 7, 11]
|
95 |
+
resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
96 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
97 |
+
self.num_upsamples = len(upsample_rates)
|
98 |
+
|
99 |
+
# pre conv
|
100 |
+
self.conv_pre = weight_norm(Conv1d(input_dims, upsample_initial_channel, 7, 1, padding=3))
|
101 |
+
self.cond_layer = None
|
102 |
+
|
103 |
+
# transposed conv-based upsamplers. does not apply anti-aliasing
|
104 |
+
self.ups = nn.ModuleList()
|
105 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
106 |
+
self.ups.append(nn.ModuleList([
|
107 |
+
weight_norm(ConvTranspose1d(upsample_initial_channel // (2 ** i),
|
108 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
109 |
+
k, u, padding=(k - u) // 2))
|
110 |
+
]))
|
111 |
+
|
112 |
+
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
113 |
+
self.resblocks = nn.ModuleList()
|
114 |
+
for i in range(len(self.ups)):
|
115 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
116 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
117 |
+
self.resblocks.append(AMPBlock1(ch, k, d))
|
118 |
+
|
119 |
+
# post conv
|
120 |
+
activation_post = SnakeBeta(ch, alpha_logscale=True)
|
121 |
+
self.activation_post = Activation1d(activation=activation_post)
|
122 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
123 |
+
|
124 |
+
# weight initialization
|
125 |
+
for i in range(len(self.ups)):
|
126 |
+
self.ups[i].apply(init_weights)
|
127 |
+
self.conv_post.apply(init_weights)
|
128 |
+
|
129 |
+
def forward(self, x) -> torch.Tensor:
|
130 |
+
"""
|
131 |
+
Args
|
132 |
+
----
|
133 |
+
x: torch.Tensor of shape [B, T, C]
|
134 |
+
"""
|
135 |
+
with torch.inference_mode():
|
136 |
+
|
137 |
+
x = self.conv_pre(x)
|
138 |
+
|
139 |
+
for i in range(self.num_upsamples):
|
140 |
+
# upsampling
|
141 |
+
for i_up in range(len(self.ups[i])):
|
142 |
+
x = self.ups[i][i_up](x)
|
143 |
+
# AMP blocks
|
144 |
+
xs = None
|
145 |
+
for j in range(self.num_kernels):
|
146 |
+
if xs is None:
|
147 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
148 |
+
else:
|
149 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
150 |
+
x = xs / self.num_kernels
|
151 |
+
|
152 |
+
# post conv
|
153 |
+
x = self.activation_post(x)
|
154 |
+
x = self.conv_post(x)
|
155 |
+
|
156 |
+
# Bound the output to [-1, 1]
|
157 |
+
x = torch.tanh(x)
|
158 |
+
|
159 |
+
return x
|
160 |
+
|
161 |
+
@property
|
162 |
+
def weight_norm_enabled(self) -> bool:
|
163 |
+
return any(
|
164 |
+
isinstance(hook, WeightNorm) and hook.name == "weight"
|
165 |
+
for k, hook in self.conv_pre._forward_pre_hooks.items()
|
166 |
+
)
|
167 |
+
|
168 |
+
def set_weight_norm(self, enabled: bool):
|
169 |
+
"""
|
170 |
+
N.B.: weight norm modifies the state dict, causing incompatibilities. Conventions:
|
171 |
+
- BigVGAN runs with weight norm for training, without for inference (done automatically by instantiate())
|
172 |
+
- All checkpoints are saved with weight norm (allows resuming training)
|
173 |
+
"""
|
174 |
+
if enabled != self.weight_norm_enabled:
|
175 |
+
weight_norm_fn = weight_norm if enabled else remove_weight_norm
|
176 |
+
logger.debug(f"{'Applying' if enabled else 'Removing'} weight norm...")
|
177 |
+
|
178 |
+
for l in self.ups:
|
179 |
+
for l_i in l:
|
180 |
+
weight_norm_fn(l_i)
|
181 |
+
for l in self.resblocks:
|
182 |
+
l.set_weight_norm(enabled)
|
183 |
+
weight_norm_fn(self.conv_pre)
|
184 |
+
weight_norm_fn(self.conv_post)
|
185 |
+
|
186 |
+
def train_mode(self):
|
187 |
+
self.train()
|
188 |
+
self.set_weight_norm(enabled=True)
|
189 |
+
|
190 |
+
def inference_mode(self):
|
191 |
+
self.eval()
|
192 |
+
self.set_weight_norm(enabled=False)
|
193 |
+
|
194 |
+
|
195 |
+
if __name__ == '__main__':
|
196 |
+
import sys
|
197 |
+
import soundfile as sf
|
198 |
+
model = BigVGAN()
|
199 |
+
|
200 |
+
state_dict = torch.load("bigvgan32k.pt")
|
201 |
+
msg = model.load_state_dict(state_dict)
|
202 |
+
model.eval()
|
203 |
+
model.set_weight_norm(enabled=False)
|
204 |
+
|
205 |
+
print(msg)
|
206 |
+
mels = torch.load("mels.pt")
|
207 |
+
with torch.inference_mode():
|
208 |
+
y = model(mels.cpu())
|
209 |
+
|
210 |
+
for i, wav in enumerate(y):
|
211 |
+
wav = wav.view(-1).detach().numpy()
|
212 |
+
sf.write(f"bigvgan_test{i}.flac", wav, samplerate=32_000, format="FLAC")
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__init__.py
RENAMED
File without changes
|
chatterbox/src/orator/models/s3gen/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (290 Bytes). View file
|
|
chatterbox/src/orator/models/s3gen/__pycache__/const.cpython-311.pyc
ADDED
Binary file (186 Bytes). View file
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/decoder.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/decoder.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/decoder.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/f0_predictor.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/f0_predictor.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/f0_predictor.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/flow.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/flow.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/flow.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/flow_matching.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/flow_matching.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/flow_matching.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/hifigan.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/hifigan.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/hifigan.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/s3gen.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/s3gen.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/s3gen.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/__pycache__/xvector.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/__pycache__/xvector.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/__pycache__/xvector.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/const.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/decoder.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/f0_predictor.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/flow.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/flow_matching.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/hifigan.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/__pycache__/decoder.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/decoder.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/matcha/__pycache__/decoder.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/__pycache__/flow_matching.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/flow_matching.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/matcha/__pycache__/flow_matching.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/__pycache__/transformer.cpython-311.pyc
RENAMED
Binary files a/chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/transformer.cpython-311.pyc and b/chatterbox/src/orator/models/s3gen/matcha/__pycache__/transformer.cpython-311.pyc differ
|
|
chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/decoder.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/flow_matching.py
RENAMED
File without changes
|
chatterbox/src/{chatterbox β orator}/models/s3gen/matcha/text_encoder.py
RENAMED
File without changes
|