ruslanmv's picture
Update app.py
7f0496b verified
raw
history blame
9.88 kB
import moviepy.editor as mpy
from PIL import Image
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch
from min_dalle import MinDalle
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
import textwrap
from mutagen.mp3 import MP3
from gtts import gTTS
from pydub import AudioSegment
import os
import glob
import nltk
import subprocess
import shutil
import matplotlib.pyplot as plt
import gc # Import the garbage collector
from audio import *
# Download necessary NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
description = "Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
# Load tokenizer and model for text summarization
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
# Check for CUDA availability and set device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model.to(device)
# Function to log GPU memory (optional, for debugging)
def log_gpu_memory():
if torch.cuda.is_available():
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
else:
print("CUDA is not available. Cannot log GPU memory.")
# --------- MinDalle Image Generation Functions ---------
# Load MinDalle model once
def load_min_dalle_model(models_root: str = 'pretrained', fp16: bool = True):
"""
Load the MinDalle model.
Args:
models_root: Path to the directory containing MinDalle models.
fp16: Whether to use float16 for faster generation (requires CUDA).
Returns:
An instance of the MinDalle model.
"""
print("DEBUG: Loading MinDalle model...")
return MinDalle(
is_mega=True,
models_root=models_root,
is_reusable=False, # Set is_reusable to False
is_verbose=True,
dtype=torch.float16 if fp16 else torch.float32,
device=device
)
# Initialize the MinDalle model
min_dalle_model = load_min_dalle_model()
def generate_image_with_min_dalle(
model: MinDalle,
text: str,
seed: int = -1,
grid_size: int = 1
):
"""
Generates an image from text using MinDalle.
Args:
model: The preloaded MinDalle model.
text: The text prompt to generate the image from.
seed: The random seed for image generation. -1 for random.
grid_size: The grid size for multiple image generation.
Returns:
A PIL Image object.
"""
print(f"DEBUG: Generating image with MinDalle for text: '{text}'")
model.is_reusable = False
with torch.no_grad():
image = model.generate_image(
text,
seed,
grid_size,
is_verbose=False
)
# Clear GPU memory after generation
torch.cuda.empty_cache()
gc.collect()
print("DEBUG: Image generated successfully.")
return image
# --------- End of MinDalle Functions ---------
# Merge audio files
from pydub import AudioSegment
import os
# Function to generate video from text
def get_output_video(text):
print("DEBUG: Starting get_output_video function...")
# Summarize the input text
print("DEBUG: Summarizing text...")
inputs = tokenizer(
text,
max_length=1024,
truncation=True,
return_tensors="pt"
).to(device)
summary_ids = model.generate(inputs["input_ids"])
summary = tokenizer.batch_decode(
summary_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
plot = list(summary[0].split('.'))
print(f"DEBUG: Summary generated: {plot}")
# Generate images for each sentence in the plot
generated_images = []
for i, senten in enumerate(plot[:-1]):
print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
image_dir = f"image_{i}"
os.makedirs(image_dir, exist_ok=True)
min_dalle_model = load_min_dalle_model()
image = generate_image_with_min_dalle(
min_dalle_model,
text=senten,
seed=1,
grid_size=1
)
generated_images.append(image)
image_path = os.path.join(image_dir, "generated_image.png")
image.save(image_path)
print(f"DEBUG: Image generated and saved to {image_path}")
del min_dalle_model
torch.cuda.empty_cache()
gc.collect()
# Create subtitles from the plot
sentences = plot[:-1]
print("DEBUG: Creating subtitles...")
assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]
# Add subtitles to images
def draw_multiple_line_text(image, text, font, text_color, text_start_height):
draw = ImageDraw.Draw(image)
image_width, image_height = image.size
y_text = text_start_height
lines = textwrap.wrap(text, width=40)
for line in lines:
line_width, line_height = font.getbbox(line)[2:]
draw.text(((image_width - line_width) / 2, y_text),
line, font=font, fill=text_color)
y_text += line_height
def add_text_to_img(text1, image_input):
print(f"DEBUG: Adding text to image: '{text1}'")
fontsize = 30
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
if not os.path.exists(path_font):
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
font = ImageFont.truetype(path_font, fontsize)
text_color = (255, 255, 0)
text_start_height = image_input.height - (fontsize * len(textwrap.wrap(text1, width=40))) - 20
draw_multiple_line_text(image_input, text1, font, text_color, text_start_height)
return image_input
generated_images_sub = []
for k, image in enumerate(generated_images):
text_to_add = sub_names[k][0]
result = add_text_to_img(text_to_add, image.copy())
generated_images_sub.append(result)
result.save(f"image_{k}/generated_image_with_subtitles.png")
# Generate audio for each subtitle
mp3_names = []
mp3_lengths = []
for k, text_to_add in enumerate(sub_names):
print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
f_name = f'audio_{k}.mp3'
mp3_names.append(f_name)
myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
myobj.save(f_name)
audio = MP3(f_name)
mp3_lengths.append(audio.info.length)
print(f"DEBUG: Audio duration: {audio.info.length} seconds")
# Merge audio files
export_path = merge_audio_files(mp3_names)
# Create video clips from images
clips = []
for k, img in enumerate(generated_images_sub):
duration = mp3_lengths[k]
print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
clips.append(clip)
# Concatenate video clips
print("DEBUG: Concatenating video clips...")
concat_clip = mpy.concatenate_videoclips(clips, method="compose")
concat_clip.write_videofile("result_no_audio.mp4", fps=24)
# Combine video and audio
movie_name = 'result_no_audio.mp4'
movie_final = 'result_final.mp4'
def combine_audio(vidname, audname, outname, fps=24):
print(f"DEBUG: Combining audio for video: '{vidname}'")
my_clip = mpy.VideoFileClip(vidname)
audio_background = mpy.AudioFileClip(audname)
final_clip = my_clip.set_audio(audio_background)
final_clip.write_videofile(outname, fps=fps)
combine_audio(movie_name, export_path, movie_final)
# Clean up
print("DEBUG: Cleaning up files...")
for i in range(len(generated_images_sub)):
shutil.rmtree(f"image_{i}")
os.remove(f"audio_{i}.mp3")
os.remove("result.mp3")
os.remove("result_no_audio.mp4")
print("DEBUG: Cleanup complete.")
print("DEBUG: get_output_video function completed successfully.")
return 'result_final.mp4'
# Example text (can be changed by user in Gradio interface)
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
# Create Gradio interface
demo = gr.Blocks()
with demo:
gr.Markdown("# Video Generator from stories with Artificial Intelligence")
gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using Dalle-mini, and the subtitles and audio are created using gTTS. These are combined to generate a video.")
with gr.Row():
with gr.Column():
input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!")
with gr.Row():
button_gen_video = gr.Button("Generate Video")
with gr.Column():
output_interpolation = gr.Video(label="Generated Video")
gr.Markdown("<h3>Future Works </h3>")
gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2. For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation)
# Launch the Gradio app
demo.launch(debug=True, share=False)