Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,297 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import moviepy.editor as mpe
|
| 4 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
from min_dalle import MinDalle
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from gtts import gTTS
|
| 8 |
from pydub import AudioSegment
|
| 9 |
-
import nltk
|
| 10 |
-
import textwrap
|
| 11 |
import os
|
| 12 |
import glob
|
|
|
|
| 13 |
import subprocess
|
| 14 |
-
import
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
import spaces
|
| 20 |
-
else:
|
| 21 |
-
class spaces:
|
| 22 |
-
@staticmethod
|
| 23 |
-
def GPU(func):
|
| 24 |
-
def wrapper(*args, **kwargs):
|
| 25 |
-
return func(*args, **kwargs)
|
| 26 |
-
return wrapper
|
| 27 |
-
|
| 28 |
-
# Ensure 'punkt' is downloaded for nltk
|
| 29 |
try:
|
| 30 |
nltk.data.find('tokenizers/punkt')
|
| 31 |
except LookupError:
|
| 32 |
nltk.download('punkt')
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
imageio_ffmpeg.get_ffmpeg_exe()
|
| 37 |
-
print("FFmpeg downloaded successfully (if not already present).")
|
| 38 |
-
except Exception as e:
|
| 39 |
-
print(f"Error downloading FFmpeg using imageio_ffmpeg: {e}")
|
| 40 |
-
raise
|
| 41 |
-
|
| 42 |
-
description = "Video Story Generator with Audio \n PS: Generation of video by using Artificial Intelligence by dalle-mini and distilbart and gtss "
|
| 43 |
-
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
|
| 44 |
|
|
|
|
| 45 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
| 46 |
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
|
|
|
|
|
|
| 47 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 48 |
-
model.to(device)
|
| 49 |
print(f"Using device: {device}")
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Set the device to either "cuda" or "cpu". Once everything has finished initializing,
|
| 69 |
-
float32 is faster than float16 but uses more GPU memory.
|
| 70 |
-
'''
|
| 71 |
-
|
| 72 |
-
#@spaces.GPU(duration=60 * 3)
|
| 73 |
-
def generate_image(
|
| 74 |
-
is_mega: bool,
|
| 75 |
-
text: str,
|
| 76 |
-
seed: int,
|
| 77 |
-
grid_size: int,
|
| 78 |
-
top_k: int,
|
| 79 |
-
image_path: str,
|
| 80 |
-
models_root: str,
|
| 81 |
-
fp16: bool,
|
| 82 |
-
):
|
| 83 |
-
print(f"Generating image for: {text}")
|
| 84 |
-
model = MinDalle(
|
| 85 |
-
is_mega=is_mega,
|
| 86 |
-
models_root=models_root,
|
| 87 |
-
is_reusable=True,
|
| 88 |
-
is_verbose=True,
|
| 89 |
-
dtype=torch.float16 if fp16 else torch.float32, # ensures correct data type
|
| 90 |
-
device=device
|
| 91 |
-
)
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
image = model.generate_image(
|
| 95 |
text,
|
| 96 |
seed,
|
| 97 |
grid_size,
|
| 98 |
-
|
| 99 |
-
is_verbose=True
|
| 100 |
)
|
| 101 |
-
print(f"Image generated successfully.")
|
| 102 |
-
return image
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
generated_images = []
|
| 105 |
for i, senten in enumerate(plot[:-1]):
|
| 106 |
-
print(f"Generating image {i+1} of {len(plot)-1}...")
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
| 125 |
sentences = plot[:-1]
|
| 126 |
-
|
| 127 |
-
assert len(generated_images) == len(sentences),
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
c = 0
|
| 132 |
-
sub_names = []
|
| 133 |
-
for k in range(len(generated_images)):
|
| 134 |
-
subtitles = tokenize.sent_tokenize(sentences[k])
|
| 135 |
-
sub_names.append(subtitles)
|
| 136 |
-
print(f"Subtitles generated for image {k+1}: {subtitles}")
|
| 137 |
-
|
| 138 |
-
# Step 5- Adding Subtitles to the Images
|
| 139 |
def draw_multiple_line_text(image, text, font, text_color, text_start_height):
|
| 140 |
draw = ImageDraw.Draw(image)
|
| 141 |
image_width, image_height = image.size
|
| 142 |
y_text = text_start_height
|
| 143 |
lines = textwrap.wrap(text, width=40)
|
| 144 |
for line in lines:
|
| 145 |
-
line_width, line_height = font.getbbox(line)[2:
|
| 146 |
draw.text(((image_width - line_width) / 2, y_text),
|
| 147 |
line, font=font, fill=text_color)
|
| 148 |
y_text += line_height
|
| 149 |
|
| 150 |
def add_text_to_img(text1, image_input):
|
| 151 |
-
''
|
| 152 |
-
|
| 153 |
-
'''
|
| 154 |
-
image = image_input
|
| 155 |
-
fontsize = 20 # Increased font size
|
| 156 |
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
|
| 157 |
if not os.path.exists(path_font):
|
| 158 |
-
# Try alternative location on different systems
|
| 159 |
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
text_color = (255, 255, 0)
|
| 167 |
-
text_start_height = 200
|
| 168 |
-
draw_multiple_line_text(image, text1, font, text_color, text_start_height)
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"Error loading or using font: {e}")
|
| 171 |
-
|
| 172 |
-
return image
|
| 173 |
|
| 174 |
generated_images_sub = []
|
| 175 |
-
for k in
|
| 176 |
-
imagenes = generated_images[k].copy()
|
| 177 |
text_to_add = sub_names[k][0]
|
| 178 |
-
result = add_text_to_img(text_to_add,
|
| 179 |
generated_images_sub.append(result)
|
| 180 |
-
|
| 181 |
|
| 182 |
-
#
|
| 183 |
-
c = 0
|
| 184 |
mp3_names = []
|
| 185 |
mp3_lengths = []
|
| 186 |
-
for k in
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
f_name = 'audio_' + str(c) + '.mp3'
|
| 190 |
mp3_names.append(f_name)
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
# here we have marked slow=False. Which tells
|
| 197 |
-
# the module that the converted audio should
|
| 198 |
-
# have a high speed
|
| 199 |
-
myobj = gTTS(text=mytext, lang=language, slow=False)
|
| 200 |
-
# Saving the converted audio in a mp3 file named
|
| 201 |
-
sound_file = f_name
|
| 202 |
-
myobj.save(sound_file)
|
| 203 |
-
audio = AudioSegment.from_file(sound_file, format="mp3")
|
| 204 |
-
duration = len(audio) / 1000
|
| 205 |
-
mp3_lengths.append(duration)
|
| 206 |
-
print(f"Audio duration: {duration} seconds")
|
| 207 |
-
c += 1
|
| 208 |
-
|
| 209 |
-
# Step 8 - Merge audio files
|
| 210 |
-
cwd = os.getcwd().replace(chr(92), '/')
|
| 211 |
-
export_path = 'result.mp3'
|
| 212 |
-
silence = AudioSegment.silent(duration=500)
|
| 213 |
-
full_audio = AudioSegment.empty()
|
| 214 |
-
for n, mp3_file in enumerate(mp3_names):
|
| 215 |
-
mp3_file = mp3_file.replace(chr(92), '/')
|
| 216 |
-
print(f"Merging audio file: {mp3_file}")
|
| 217 |
-
# Load the current mp3 into `audio_segment`
|
| 218 |
-
audio_segment = AudioSegment.from_mp3(mp3_file)
|
| 219 |
-
# Just accumulate the new `audio_segment` + `silence`
|
| 220 |
-
full_audio += audio_segment + silence
|
| 221 |
-
print(f'Merging audio {n+1} completed.')
|
| 222 |
-
# The loop will exit once all files in the list have been used
|
| 223 |
-
# Then export
|
| 224 |
-
full_audio.export(export_path, format='mp3')
|
| 225 |
-
print('\nAudio merging done!')
|
| 226 |
-
|
| 227 |
-
# Step 9 - Creation of the video with adjusted times of the sound
|
| 228 |
-
c = 0
|
| 229 |
-
file_names = []
|
| 230 |
-
for img in generated_images_sub:
|
| 231 |
-
f_name = 'img_' + str(c) + '.jpg'
|
| 232 |
-
file_names.append(f_name)
|
| 233 |
-
img.save(f_name)
|
| 234 |
-
print(f"Saving image: {f_name}")
|
| 235 |
-
c += 1
|
| 236 |
-
print(f"Image file names: {file_names}")
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
clips = []
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
duration
|
| 242 |
-
|
| 243 |
-
clips.append(
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
movie_final = 'result_final.mp4'
|
| 253 |
|
| 254 |
def combine_audio(vidname, audname, outname, fps=24):
|
| 255 |
-
|
| 256 |
-
|
|
|
|
| 257 |
final_clip = my_clip.set_audio(audio_background)
|
| 258 |
final_clip.write_videofile(outname, fps=fps)
|
| 259 |
|
| 260 |
-
combine_audio(movie_name, export_path, movie_final)
|
| 261 |
-
print("Video and audio merged successfully!")
|
| 262 |
|
| 263 |
-
#
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
os.remove(f)
|
| 268 |
-
os.remove("result_new.mp4")
|
| 269 |
os.remove("result.mp3")
|
| 270 |
-
|
| 271 |
|
| 272 |
-
print("
|
|
|
|
| 273 |
return 'result_final.mp4'
|
| 274 |
|
|
|
|
|
|
|
|
|
|
| 275 |
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
|
| 276 |
-
demo = gr.Blocks()
|
| 277 |
|
|
|
|
|
|
|
| 278 |
with demo:
|
| 279 |
gr.Markdown("# Video Generator from stories with Artificial Intelligence")
|
| 280 |
-
gr.Markdown(
|
| 281 |
-
"A story can be input by user. The story is summarized using DistillBART model. Then, then it is generated the images by using Dalle-mini and created the subtitles and audio gtts. These are generated as a video.")
|
| 282 |
with gr.Row():
|
| 283 |
-
# Left column (inputs)
|
| 284 |
with gr.Column():
|
| 285 |
-
input_start_text = gr.Textbox(value=text,
|
| 286 |
-
label="Type your story here, for now a sample story is added already!")
|
| 287 |
with gr.Row():
|
| 288 |
button_gen_video = gr.Button("Generate Video")
|
| 289 |
-
# Right column (outputs)
|
| 290 |
with gr.Column():
|
| 291 |
output_interpolation = gr.Video(label="Generated Video")
|
| 292 |
gr.Markdown("<h3>Future Works </h3>")
|
| 293 |
-
gr.Markdown(
|
| 294 |
-
"This program text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2 For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
|
| 295 |
button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation)
|
| 296 |
|
| 297 |
-
|
|
|
|
|
|
| 1 |
+
import moviepy.editor as mpy
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
| 6 |
from min_dalle import MinDalle
|
| 7 |
+
from huggingface_hub import snapshot_download
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
import textwrap
|
| 10 |
+
from mutagen.mp3 import MP3
|
| 11 |
from gtts import gTTS
|
| 12 |
from pydub import AudioSegment
|
|
|
|
|
|
|
| 13 |
import os
|
| 14 |
import glob
|
| 15 |
+
import nltk
|
| 16 |
import subprocess
|
| 17 |
+
import shutil
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
import gc # Import the garbage collector
|
| 20 |
+
from audio import *
|
| 21 |
+
# Download necessary NLTK data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
nltk.data.find('tokenizers/punkt')
|
| 24 |
except LookupError:
|
| 25 |
nltk.download('punkt')
|
| 26 |
|
| 27 |
+
description = "Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
|
| 28 |
+
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Load tokenizer and model for text summarization
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
| 32 |
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
| 33 |
+
|
| 34 |
+
# Check for CUDA availability and set device
|
| 35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 36 |
print(f"Using device: {device}")
|
| 37 |
+
model.to(device)
|
| 38 |
|
| 39 |
+
# Function to log GPU memory (optional, for debugging)
|
| 40 |
+
def log_gpu_memory():
|
| 41 |
+
if torch.cuda.is_available():
|
| 42 |
+
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
|
| 43 |
+
else:
|
| 44 |
+
print("CUDA is not available. Cannot log GPU memory.")
|
| 45 |
+
|
| 46 |
+
# --------- MinDalle Image Generation Functions ---------
|
| 47 |
+
|
| 48 |
+
# Load MinDalle model once
|
| 49 |
+
def load_min_dalle_model(models_root: str = 'pretrained', fp16: bool = True):
|
| 50 |
+
"""
|
| 51 |
+
Load the MinDalle model.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
models_root: Path to the directory containing MinDalle models.
|
| 55 |
+
fp16: Whether to use float16 for faster generation (requires CUDA).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
Returns:
|
| 58 |
+
An instance of the MinDalle model.
|
| 59 |
+
"""
|
| 60 |
+
print("DEBUG: Loading MinDalle model...")
|
| 61 |
+
return MinDalle(
|
| 62 |
+
is_mega=True,
|
| 63 |
+
models_root=models_root,
|
| 64 |
+
is_reusable=False, # Set is_reusable to False
|
| 65 |
+
is_verbose=True,
|
| 66 |
+
dtype=torch.float16 if fp16 else torch.float32,
|
| 67 |
+
device=device
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Initialize the MinDalle model
|
| 71 |
+
min_dalle_model = load_min_dalle_model()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def generate_image_with_min_dalle(
|
| 76 |
+
model: MinDalle,
|
| 77 |
+
text: str,
|
| 78 |
+
seed: int = -1,
|
| 79 |
+
grid_size: int = 1
|
| 80 |
+
):
|
| 81 |
+
"""
|
| 82 |
+
Generates an image from text using MinDalle.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
model: The preloaded MinDalle model.
|
| 86 |
+
text: The text prompt to generate the image from.
|
| 87 |
+
seed: The random seed for image generation. -1 for random.
|
| 88 |
+
grid_size: The grid size for multiple image generation.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
A PIL Image object.
|
| 92 |
+
"""
|
| 93 |
+
print(f"DEBUG: Generating image with MinDalle for text: '{text}'")
|
| 94 |
+
model.is_reusable = False
|
| 95 |
+
with torch.no_grad():
|
| 96 |
image = model.generate_image(
|
| 97 |
text,
|
| 98 |
seed,
|
| 99 |
grid_size,
|
| 100 |
+
is_verbose=False
|
|
|
|
| 101 |
)
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# Clear GPU memory after generation
|
| 104 |
+
torch.cuda.empty_cache()
|
| 105 |
+
gc.collect()
|
| 106 |
+
|
| 107 |
+
print("DEBUG: Image generated successfully.")
|
| 108 |
+
return image
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# --------- End of MinDalle Functions ---------
|
| 112 |
+
# Merge audio files
|
| 113 |
+
|
| 114 |
+
from pydub import AudioSegment
|
| 115 |
+
import os
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# Function to generate video from text
|
| 122 |
+
def get_output_video(text):
|
| 123 |
+
print("DEBUG: Starting get_output_video function...")
|
| 124 |
+
|
| 125 |
+
# Summarize the input text
|
| 126 |
+
print("DEBUG: Summarizing text...")
|
| 127 |
+
inputs = tokenizer(
|
| 128 |
+
text,
|
| 129 |
+
max_length=1024,
|
| 130 |
+
truncation=True,
|
| 131 |
+
return_tensors="pt"
|
| 132 |
+
).to(device)
|
| 133 |
+
summary_ids = model.generate(inputs["input_ids"])
|
| 134 |
+
summary = tokenizer.batch_decode(
|
| 135 |
+
summary_ids,
|
| 136 |
+
skip_special_tokens=True,
|
| 137 |
+
clean_up_tokenization_spaces=False
|
| 138 |
+
)
|
| 139 |
+
plot = list(summary[0].split('.'))
|
| 140 |
+
print(f"DEBUG: Summary generated: {plot}")
|
| 141 |
+
|
| 142 |
+
# Generate images for each sentence in the plot
|
| 143 |
generated_images = []
|
| 144 |
for i, senten in enumerate(plot[:-1]):
|
| 145 |
+
print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
|
| 146 |
+
image_dir = f"image_{i}"
|
| 147 |
+
os.makedirs(image_dir, exist_ok=True)
|
| 148 |
+
|
| 149 |
+
min_dalle_model = load_min_dalle_model()
|
| 150 |
+
|
| 151 |
+
image = generate_image_with_min_dalle(
|
| 152 |
+
min_dalle_model,
|
| 153 |
+
text=senten,
|
| 154 |
+
seed=1,
|
| 155 |
+
grid_size=1
|
| 156 |
+
)
|
| 157 |
+
generated_images.append(image)
|
| 158 |
+
image_path = os.path.join(image_dir, "generated_image.png")
|
| 159 |
+
image.save(image_path)
|
| 160 |
+
print(f"DEBUG: Image generated and saved to {image_path}")
|
| 161 |
+
|
| 162 |
+
del min_dalle_model
|
| 163 |
+
torch.cuda.empty_cache()
|
| 164 |
+
gc.collect()
|
| 165 |
+
|
| 166 |
+
# Create subtitles from the plot
|
| 167 |
sentences = plot[:-1]
|
| 168 |
+
print("DEBUG: Creating subtitles...")
|
| 169 |
+
assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
|
| 170 |
+
sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]
|
| 171 |
+
|
| 172 |
+
# Add subtitles to images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
def draw_multiple_line_text(image, text, font, text_color, text_start_height):
|
| 174 |
draw = ImageDraw.Draw(image)
|
| 175 |
image_width, image_height = image.size
|
| 176 |
y_text = text_start_height
|
| 177 |
lines = textwrap.wrap(text, width=40)
|
| 178 |
for line in lines:
|
| 179 |
+
line_width, line_height = font.getbbox(line)[2:]
|
| 180 |
draw.text(((image_width - line_width) / 2, y_text),
|
| 181 |
line, font=font, fill=text_color)
|
| 182 |
y_text += line_height
|
| 183 |
|
| 184 |
def add_text_to_img(text1, image_input):
|
| 185 |
+
print(f"DEBUG: Adding text to image: '{text1}'")
|
| 186 |
+
fontsize = 30
|
|
|
|
|
|
|
|
|
|
| 187 |
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
|
| 188 |
if not os.path.exists(path_font):
|
|
|
|
| 189 |
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
| 190 |
+
|
| 191 |
+
font = ImageFont.truetype(path_font, fontsize)
|
| 192 |
+
text_color = (255, 255, 0)
|
| 193 |
+
text_start_height = image_input.height - (fontsize * len(textwrap.wrap(text1, width=40))) - 20
|
| 194 |
+
draw_multiple_line_text(image_input, text1, font, text_color, text_start_height)
|
| 195 |
+
return image_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
generated_images_sub = []
|
| 198 |
+
for k, image in enumerate(generated_images):
|
|
|
|
| 199 |
text_to_add = sub_names[k][0]
|
| 200 |
+
result = add_text_to_img(text_to_add, image.copy())
|
| 201 |
generated_images_sub.append(result)
|
| 202 |
+
result.save(f"image_{k}/generated_image_with_subtitles.png")
|
| 203 |
|
| 204 |
+
# Generate audio for each subtitle
|
|
|
|
| 205 |
mp3_names = []
|
| 206 |
mp3_lengths = []
|
| 207 |
+
for k, text_to_add in enumerate(sub_names):
|
| 208 |
+
print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
|
| 209 |
+
f_name = f'audio_{k}.mp3'
|
|
|
|
| 210 |
mp3_names.append(f_name)
|
| 211 |
+
myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
|
| 212 |
+
myobj.save(f_name)
|
| 213 |
+
audio = MP3(f_name)
|
| 214 |
+
mp3_lengths.append(audio.info.length)
|
| 215 |
+
print(f"DEBUG: Audio duration: {audio.info.length} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
# Merge audio files
|
| 218 |
+
export_path = merge_audio_files(mp3_names)
|
| 219 |
+
|
| 220 |
+
# Create video clips from images
|
| 221 |
clips = []
|
| 222 |
+
for k, img in enumerate(generated_images_sub):
|
| 223 |
+
duration = mp3_lengths[k]
|
| 224 |
+
print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
|
| 225 |
+
clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
|
| 226 |
+
clips.append(clip)
|
| 227 |
+
|
| 228 |
+
# Concatenate video clips
|
| 229 |
+
print("DEBUG: Concatenating video clips...")
|
| 230 |
+
concat_clip = mpy.concatenate_videoclips(clips, method="compose")
|
| 231 |
+
concat_clip.write_videofile("result_no_audio.mp4", fps=24)
|
| 232 |
+
|
| 233 |
+
# Combine video and audio
|
| 234 |
+
movie_name = 'result_no_audio.mp4'
|
| 235 |
movie_final = 'result_final.mp4'
|
| 236 |
|
| 237 |
def combine_audio(vidname, audname, outname, fps=24):
|
| 238 |
+
print(f"DEBUG: Combining audio for video: '{vidname}'")
|
| 239 |
+
my_clip = mpy.VideoFileClip(vidname)
|
| 240 |
+
audio_background = mpy.AudioFileClip(audname)
|
| 241 |
final_clip = my_clip.set_audio(audio_background)
|
| 242 |
final_clip.write_videofile(outname, fps=fps)
|
| 243 |
|
| 244 |
+
combine_audio(movie_name, export_path, movie_final)
|
|
|
|
| 245 |
|
| 246 |
+
# Clean up
|
| 247 |
+
print("DEBUG: Cleaning up files...")
|
| 248 |
+
for i in range(len(generated_images_sub)):
|
| 249 |
+
shutil.rmtree(f"image_{i}")
|
| 250 |
+
os.remove(f"audio_{i}.mp3")
|
|
|
|
| 251 |
os.remove("result.mp3")
|
| 252 |
+
os.remove("result_no_audio.mp4")
|
| 253 |
|
| 254 |
+
print("DEBUG: Cleanup complete.")
|
| 255 |
+
print("DEBUG: get_output_video function completed successfully.")
|
| 256 |
return 'result_final.mp4'
|
| 257 |
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# Example text (can be changed by user in Gradio interface)
|
| 261 |
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
|
|
|
|
| 262 |
|
| 263 |
+
# Create Gradio interface
|
| 264 |
+
demo = gr.Blocks()
|
| 265 |
with demo:
|
| 266 |
gr.Markdown("# Video Generator from stories with Artificial Intelligence")
|
| 267 |
+
gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using Dalle-mini, and the subtitles and audio are created using gTTS. These are combined to generate a video.")
|
|
|
|
| 268 |
with gr.Row():
|
|
|
|
| 269 |
with gr.Column():
|
| 270 |
+
input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!")
|
|
|
|
| 271 |
with gr.Row():
|
| 272 |
button_gen_video = gr.Button("Generate Video")
|
|
|
|
| 273 |
with gr.Column():
|
| 274 |
output_interpolation = gr.Video(label="Generated Video")
|
| 275 |
gr.Markdown("<h3>Future Works </h3>")
|
| 276 |
+
gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2. For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
|
|
|
|
| 277 |
button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation)
|
| 278 |
|
| 279 |
+
# Launch the Gradio app
|
| 280 |
+
demo.launch(debug=True, share=False)
|