File size: 10,710 Bytes
7f0496b
 
 
b080b2f
6668dc9
 
7f0496b
 
 
 
b080b2f
 
6668dc9
 
7f0496b
108e243
7f0496b
 
 
 
18c8652
 
7f0496b
6668dc9
 
 
 
 
7f0496b
 
6668dc9
7f0496b
b080b2f
 
7f0496b
 
3f8f4bc
351d597
7f0496b
3f8f4bc
7f0496b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deebc86
7f0496b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6668dc9
 
 
 
7f0496b
6668dc9
 
7f0496b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6668dc9
351d597
7f0496b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6668dc9
7f0496b
 
 
 
18c8652
 
 
 
 
 
 
6668dc9
18c8652
6668dc9
18c8652
6668dc9
7f0496b
18c8652
 
6668dc9
 
7f0496b
18c8652
 
 
 
6668dc9
 
c01596a
18c8652
7f0496b
 
18c8652
 
 
 
 
 
 
 
7f0496b
6668dc9
18c8652
 
6668dc9
7f0496b
6668dc9
7f0496b
6668dc9
7f0496b
6668dc9
18c8652
 
7f0496b
6668dc9
 
7f0496b
 
 
6668dc9
7f0496b
 
 
 
 
6668dc9
7f0496b
 
 
 
6668dc9
7f0496b
 
 
 
 
 
 
 
 
 
 
 
 
6668dc9
 
 
7f0496b
 
 
6668dc9
 
 
7f0496b
deebc86
7f0496b
 
 
 
 
108e243
7f0496b
108e243
7f0496b
 
6668dc9
 
7f0496b
 
 
6668dc9
deebc86
7f0496b
 
b080b2f
04bcc37
7f0496b
b080b2f
 
7f0496b
b080b2f
 
 
 
 
7f0496b
b080b2f
deebc86
7f0496b
18c8652
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import moviepy.editor as mpy
from PIL import Image
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch
from min_dalle import MinDalle
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
import textwrap
from mutagen.mp3 import MP3
from gtts import gTTS
from pydub import AudioSegment
import os
import glob
import nltk
import subprocess
import shutil
import matplotlib.pyplot as plt
import gc  # Import the garbage collector
from audio import *
import os

# Download necessary NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')

description = "Video Story Generator with Audio \n PS:  Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss   "

# Load tokenizer and model for text summarization
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")

# Check for CUDA availability and set device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model.to(device)

# Function to log GPU memory (optional, for debugging)
def log_gpu_memory():
    if torch.cuda.is_available():
        print(subprocess.check_output('nvidia-smi').decode('utf-8'))
    else:
        print("CUDA is not available. Cannot log GPU memory.")

# --------- MinDalle Image Generation Functions ---------

# Load MinDalle model once
def load_min_dalle_model(models_root: str = 'pretrained', fp16: bool = True):
    """
    Load the MinDalle model.

    Args:
        models_root: Path to the directory containing MinDalle models.
        fp16: Whether to use float16 for faster generation (requires CUDA).

    Returns:
        An instance of the MinDalle model.
    """
    print("DEBUG: Loading MinDalle model...")
    return MinDalle(
        is_mega=True,
        models_root=models_root,
        is_reusable=False,  # Set is_reusable to False
        is_verbose=True,
        dtype=torch.float16 if fp16 else torch.float32,
        device=device
    )

# Initialize the MinDalle model
min_dalle_model = load_min_dalle_model()

def generate_image_with_min_dalle(
    model: MinDalle,
    text: str,
    seed: int = -1,
    grid_size: int = 1
):
    """
    Generates an image from text using MinDalle.

    Args:
        model: The preloaded MinDalle model.
        text: The text prompt to generate the image from.
        seed: The random seed for image generation. -1 for random.
        grid_size: The grid size for multiple image generation.

    Returns:
        A PIL Image object.
    """
    print(f"DEBUG: Generating image with MinDalle for text: '{text}'")
    model.is_reusable = False
    with torch.no_grad():
        image = model.generate_image(
            text,
            seed,
            grid_size,
            is_verbose=False
        )

    # Clear GPU memory after generation
    torch.cuda.empty_cache()
    gc.collect()

    print("DEBUG: Image generated successfully.")
    return image


# --------- End of MinDalle Functions ---------
# Merge audio files

from pydub import AudioSegment
import os

# Function to generate video from text
def get_output_video(text):
    print("DEBUG: Starting get_output_video function...")
  
   # Summarize the input text
    print("DEBUG: Summarizing text...")
    inputs = tokenizer(
        text,
        max_length=1024,
        truncation=True,
        return_tensors="pt"
    ).to(device)
    summary_ids = model.generate(inputs["input_ids"])
    summary = tokenizer.batch_decode(
        summary_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )
    plot = list(summary[0].split('.'))
    print(f"DEBUG: Summary generated: {plot}")

    # Generate images for each sentence in the plot
    generated_images = []
    for i, senten in enumerate(plot[:-1]):
        print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
        image_dir = f"image_{i}"
        os.makedirs(image_dir, exist_ok=True)

        min_dalle_model = load_min_dalle_model()

        image = generate_image_with_min_dalle(
            min_dalle_model,
            text=senten,
            seed=1,
            grid_size=1
        )
        generated_images.append(image)
        image_path = os.path.join(image_dir, "generated_image.png")
        image.save(image_path)
        print(f"DEBUG: Image generated and saved to {image_path}")

        del min_dalle_model
        torch.cuda.empty_cache()
        gc.collect()

    # Create subtitles from the plot
    sentences = plot[:-1]
    print("DEBUG: Creating subtitles...")
    assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
    sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]

    # Add subtitles to images with dynamic adjustments
    def get_dynamic_wrap_width(font, text, image_width, padding):
        # Estimate the number of characters per line dynamically
        avg_char_width = sum(font.getbbox(c)[2] for c in text) / len(text)
        return max(1, (image_width - padding * 2) // avg_char_width)

    def draw_multiple_line_text(image, text, font, text_color, text_start_height, padding=10):
        draw = ImageDraw.Draw(image)
        image_width, _ = image.size
        y_text = text_start_height
        lines = textwrap.wrap(text, width=get_dynamic_wrap_width(font, text, image_width, padding))
        for line in lines:
            line_width, line_height = font.getbbox(line)[2:]
            draw.text(((image_width - line_width) / 2, y_text), line, font=font, fill=text_color)
            y_text += line_height + padding

    def add_text_to_img(text1, image_input):
        print(f"DEBUG: Adding text to image: '{text1}'")
        # Scale font size dynamically
        base_font_size = 30
        image_width, image_height = image_input.size
        scaled_font_size = max(10, int(base_font_size * (image_width / 800)))  # Adjust 800 based on typical image width
        path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
        if not os.path.exists(path_font):
            path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
        font = ImageFont.truetype(path_font, scaled_font_size)

        text_color = (255, 255, 0)
        padding = 10

        # Estimate starting height dynamically
        line_height = font.getbbox("A")[3] + padding
        total_text_height = len(textwrap.wrap(text1, get_dynamic_wrap_width(font, text1, image_width, padding))) * line_height
        text_start_height = image_height - total_text_height - 20

        draw_multiple_line_text(image_input, text1, font, text_color, text_start_height, padding)
        return image_input


    # Process images with subtitles
    generated_images_sub = []
    for k, image in enumerate(generated_images):
        text_to_add = sub_names[k][0]
        result = add_text_to_img(text_to_add, image.copy())
        generated_images_sub.append(result)
        result.save(f"image_{k}/generated_image_with_subtitles.png")



    # Generate audio for each subtitle
    mp3_names = []
    mp3_lengths = []
    for k, text_to_add in enumerate(sub_names):
        print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
        f_name = f'audio_{k}.mp3'
        mp3_names.append(f_name)
        myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
        myobj.save(f_name)
        audio = MP3(f_name)
        mp3_lengths.append(audio.info.length)
        print(f"DEBUG: Audio duration: {audio.info.length} seconds")

    # Merge audio files
    export_path = merge_audio_files(mp3_names)

    # Create video clips from images
    clips = []
    for k, img in enumerate(generated_images_sub):
        duration = mp3_lengths[k]
        print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
        clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
        clips.append(clip)

    # Concatenate video clips
    print("DEBUG: Concatenating video clips...")
    concat_clip = mpy.concatenate_videoclips(clips, method="compose")
    concat_clip.write_videofile("result_no_audio.mp4", fps=24)

    # Combine video and audio
    movie_name = 'result_no_audio.mp4'
    movie_final = 'result_final.mp4'

    def combine_audio(vidname, audname, outname, fps=24):
        print(f"DEBUG: Combining audio for video: '{vidname}'")
        my_clip = mpy.VideoFileClip(vidname)
        audio_background = mpy.AudioFileClip(audname)
        final_clip = my_clip.set_audio(audio_background)
        final_clip.write_videofile(outname, fps=fps)

    combine_audio(movie_name, export_path, movie_final)

    # Clean up
    print("DEBUG: Cleaning up files...")
    for i in range(len(generated_images_sub)):
        shutil.rmtree(f"image_{i}")
        os.remove(f"audio_{i}.mp3")
    os.remove("result.mp3")
    os.remove("result_no_audio.mp4")

    print("DEBUG: Cleanup complete.")
    print("DEBUG: get_output_video function completed successfully.")
    return 'result_final.mp4'



# Example text (can be changed by user in Gradio interface)
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'

# Create Gradio interface
demo = gr.Blocks()
with demo:
    gr.Markdown("# Video Generator from stories with Artificial Intelligence")
    gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using Dalle-mini, and the subtitles and audio are created using gTTS. These are combined to generate a video.")
    with gr.Row():
        with gr.Column():
            input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!")
            with gr.Row():
                button_gen_video = gr.Button("Generate Video")
        with gr.Column():
            output_interpolation = gr.Video(label="Generated Video")
    gr.Markdown("<h3>Future Works </h3>")
    gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2. For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
    button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation)

# Launch the Gradio app
demo.launch(debug=True, share=True)