Spaces:
Running
Running
File size: 10,710 Bytes
7f0496b b080b2f 6668dc9 7f0496b b080b2f 6668dc9 7f0496b 108e243 7f0496b 18c8652 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b b080b2f 7f0496b 3f8f4bc 351d597 7f0496b 3f8f4bc 7f0496b deebc86 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 351d597 7f0496b 6668dc9 7f0496b 18c8652 6668dc9 18c8652 6668dc9 18c8652 6668dc9 7f0496b 18c8652 6668dc9 7f0496b 18c8652 6668dc9 c01596a 18c8652 7f0496b 18c8652 7f0496b 6668dc9 18c8652 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 18c8652 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b 6668dc9 7f0496b deebc86 7f0496b 108e243 7f0496b 108e243 7f0496b 6668dc9 7f0496b 6668dc9 deebc86 7f0496b b080b2f 04bcc37 7f0496b b080b2f 7f0496b b080b2f 7f0496b b080b2f deebc86 7f0496b 18c8652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import moviepy.editor as mpy
from PIL import Image
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch
from min_dalle import MinDalle
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
import textwrap
from mutagen.mp3 import MP3
from gtts import gTTS
from pydub import AudioSegment
import os
import glob
import nltk
import subprocess
import shutil
import matplotlib.pyplot as plt
import gc # Import the garbage collector
from audio import *
import os
# Download necessary NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
description = "Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
# Load tokenizer and model for text summarization
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
# Check for CUDA availability and set device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model.to(device)
# Function to log GPU memory (optional, for debugging)
def log_gpu_memory():
if torch.cuda.is_available():
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
else:
print("CUDA is not available. Cannot log GPU memory.")
# --------- MinDalle Image Generation Functions ---------
# Load MinDalle model once
def load_min_dalle_model(models_root: str = 'pretrained', fp16: bool = True):
"""
Load the MinDalle model.
Args:
models_root: Path to the directory containing MinDalle models.
fp16: Whether to use float16 for faster generation (requires CUDA).
Returns:
An instance of the MinDalle model.
"""
print("DEBUG: Loading MinDalle model...")
return MinDalle(
is_mega=True,
models_root=models_root,
is_reusable=False, # Set is_reusable to False
is_verbose=True,
dtype=torch.float16 if fp16 else torch.float32,
device=device
)
# Initialize the MinDalle model
min_dalle_model = load_min_dalle_model()
def generate_image_with_min_dalle(
model: MinDalle,
text: str,
seed: int = -1,
grid_size: int = 1
):
"""
Generates an image from text using MinDalle.
Args:
model: The preloaded MinDalle model.
text: The text prompt to generate the image from.
seed: The random seed for image generation. -1 for random.
grid_size: The grid size for multiple image generation.
Returns:
A PIL Image object.
"""
print(f"DEBUG: Generating image with MinDalle for text: '{text}'")
model.is_reusable = False
with torch.no_grad():
image = model.generate_image(
text,
seed,
grid_size,
is_verbose=False
)
# Clear GPU memory after generation
torch.cuda.empty_cache()
gc.collect()
print("DEBUG: Image generated successfully.")
return image
# --------- End of MinDalle Functions ---------
# Merge audio files
from pydub import AudioSegment
import os
# Function to generate video from text
def get_output_video(text):
print("DEBUG: Starting get_output_video function...")
# Summarize the input text
print("DEBUG: Summarizing text...")
inputs = tokenizer(
text,
max_length=1024,
truncation=True,
return_tensors="pt"
).to(device)
summary_ids = model.generate(inputs["input_ids"])
summary = tokenizer.batch_decode(
summary_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
plot = list(summary[0].split('.'))
print(f"DEBUG: Summary generated: {plot}")
# Generate images for each sentence in the plot
generated_images = []
for i, senten in enumerate(plot[:-1]):
print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
image_dir = f"image_{i}"
os.makedirs(image_dir, exist_ok=True)
min_dalle_model = load_min_dalle_model()
image = generate_image_with_min_dalle(
min_dalle_model,
text=senten,
seed=1,
grid_size=1
)
generated_images.append(image)
image_path = os.path.join(image_dir, "generated_image.png")
image.save(image_path)
print(f"DEBUG: Image generated and saved to {image_path}")
del min_dalle_model
torch.cuda.empty_cache()
gc.collect()
# Create subtitles from the plot
sentences = plot[:-1]
print("DEBUG: Creating subtitles...")
assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]
# Add subtitles to images with dynamic adjustments
def get_dynamic_wrap_width(font, text, image_width, padding):
# Estimate the number of characters per line dynamically
avg_char_width = sum(font.getbbox(c)[2] for c in text) / len(text)
return max(1, (image_width - padding * 2) // avg_char_width)
def draw_multiple_line_text(image, text, font, text_color, text_start_height, padding=10):
draw = ImageDraw.Draw(image)
image_width, _ = image.size
y_text = text_start_height
lines = textwrap.wrap(text, width=get_dynamic_wrap_width(font, text, image_width, padding))
for line in lines:
line_width, line_height = font.getbbox(line)[2:]
draw.text(((image_width - line_width) / 2, y_text), line, font=font, fill=text_color)
y_text += line_height + padding
def add_text_to_img(text1, image_input):
print(f"DEBUG: Adding text to image: '{text1}'")
# Scale font size dynamically
base_font_size = 30
image_width, image_height = image_input.size
scaled_font_size = max(10, int(base_font_size * (image_width / 800))) # Adjust 800 based on typical image width
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
if not os.path.exists(path_font):
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
font = ImageFont.truetype(path_font, scaled_font_size)
text_color = (255, 255, 0)
padding = 10
# Estimate starting height dynamically
line_height = font.getbbox("A")[3] + padding
total_text_height = len(textwrap.wrap(text1, get_dynamic_wrap_width(font, text1, image_width, padding))) * line_height
text_start_height = image_height - total_text_height - 20
draw_multiple_line_text(image_input, text1, font, text_color, text_start_height, padding)
return image_input
# Process images with subtitles
generated_images_sub = []
for k, image in enumerate(generated_images):
text_to_add = sub_names[k][0]
result = add_text_to_img(text_to_add, image.copy())
generated_images_sub.append(result)
result.save(f"image_{k}/generated_image_with_subtitles.png")
# Generate audio for each subtitle
mp3_names = []
mp3_lengths = []
for k, text_to_add in enumerate(sub_names):
print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
f_name = f'audio_{k}.mp3'
mp3_names.append(f_name)
myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
myobj.save(f_name)
audio = MP3(f_name)
mp3_lengths.append(audio.info.length)
print(f"DEBUG: Audio duration: {audio.info.length} seconds")
# Merge audio files
export_path = merge_audio_files(mp3_names)
# Create video clips from images
clips = []
for k, img in enumerate(generated_images_sub):
duration = mp3_lengths[k]
print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
clips.append(clip)
# Concatenate video clips
print("DEBUG: Concatenating video clips...")
concat_clip = mpy.concatenate_videoclips(clips, method="compose")
concat_clip.write_videofile("result_no_audio.mp4", fps=24)
# Combine video and audio
movie_name = 'result_no_audio.mp4'
movie_final = 'result_final.mp4'
def combine_audio(vidname, audname, outname, fps=24):
print(f"DEBUG: Combining audio for video: '{vidname}'")
my_clip = mpy.VideoFileClip(vidname)
audio_background = mpy.AudioFileClip(audname)
final_clip = my_clip.set_audio(audio_background)
final_clip.write_videofile(outname, fps=fps)
combine_audio(movie_name, export_path, movie_final)
# Clean up
print("DEBUG: Cleaning up files...")
for i in range(len(generated_images_sub)):
shutil.rmtree(f"image_{i}")
os.remove(f"audio_{i}.mp3")
os.remove("result.mp3")
os.remove("result_no_audio.mp4")
print("DEBUG: Cleanup complete.")
print("DEBUG: get_output_video function completed successfully.")
return 'result_final.mp4'
# Example text (can be changed by user in Gradio interface)
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
# Create Gradio interface
demo = gr.Blocks()
with demo:
gr.Markdown("# Video Generator from stories with Artificial Intelligence")
gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using Dalle-mini, and the subtitles and audio are created using gTTS. These are combined to generate a video.")
with gr.Row():
with gr.Column():
input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!")
with gr.Row():
button_gen_video = gr.Button("Generate Video")
with gr.Column():
output_interpolation = gr.Video(label="Generated Video")
gr.Markdown("<h3>Future Works </h3>")
gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2. For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation)
# Launch the Gradio app
demo.launch(debug=True, share=True) |