Rehman1603's picture
Update app.py
fd67255 verified
raw
history blame
3.17 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import os
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import re
import pdfplumber
# Set the API key
os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"
def extract_text_from_pdf(pdf_file, max_pages=16):
text = ""
with pdfplumber.open(pdf_file) as pdf:
for i, page in enumerate(pdf.pages):
if i >= max_pages:
break
text += page.extract_text() + "\n"
return text
def Bot(text, question):
chat_template = """
Based on the provided context: {text}
Please answer the following question: {Questions}
Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know".
"""
prompt = PromptTemplate(
input_variables=['text', 'Questions'],
template=chat_template
)
llama3 = Together(model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", max_tokens=50)
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
try:
response = Generated_chat.invoke({
"text": text,
"Questions": question
})
response_text = response['text']
response_text = response_text.replace("assistant", "")
# Post-processing to handle repeated words and ensure completeness
words = response_text.split()
seen = set()
filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())]
response_text = ' '.join(filtered_words)
response_text = response_text.strip() # Ensuring no extra spaces at the ends
if not response_text.endswith('.'):
response_text += '.'
return response_text
except Exception as e:
return f"Error in generating response: {e}"
def ChatBot(history, document, question):
greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
question_lower = question.lower().strip()
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
return history + [("User", question), ("Bot", "Hello! How can I assist you with the document today?")]
# Extract text from the uploaded PDF document
text = extract_text_from_pdf(document)
# Generate the bot response based on the question and extracted text
response = Bot(text, question)
# Update chat history with the user's question and bot's response
history.append(("User", question))
history.append(("Bot", response))
return history
# Set up the Gradio interface using Blocks
with gr.Blocks() as iface:
chatbot = gr.Chatbot()
document = gr.File(label="Upload PDF Document", type="filepath")
question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
def respond(history, document, question):
return ChatBot(history, document, question)
question.submit(respond, [chatbot, document, question], chatbot)
iface.launch(debug=True)