Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
-
from langchain import PromptTemplate
|
|
|
4 |
from langchain_together import Together
|
|
|
5 |
import pdfplumber
|
6 |
-
|
7 |
-
# Set the API key with double quotes
|
8 |
os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"
|
9 |
|
10 |
def extract_text_from_pdf(pdf_file, max_pages=16):
|
@@ -58,12 +60,19 @@ def ChatBot(history, document, question):
|
|
58 |
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
|
59 |
return history + [("User", question), ("Bot", "Hello! How can I assist you with the document today?")]
|
60 |
|
|
|
61 |
text = extract_text_from_pdf(document)
|
|
|
|
|
62 |
response = Bot(text, question)
|
|
|
|
|
63 |
history.append(("User", question))
|
64 |
history.append(("Bot", response))
|
|
|
65 |
return history
|
66 |
|
|
|
67 |
with gr.Blocks() as iface:
|
68 |
chatbot = gr.Chatbot()
|
69 |
document = gr.File(label="Upload PDF Document", type="filepath")
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
4 |
+
from langchain import PromptTemplate
|
5 |
+
from langchain import LLMChain
|
6 |
from langchain_together import Together
|
7 |
+
import re
|
8 |
import pdfplumber
|
9 |
+
# Set the API key
|
|
|
10 |
os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"
|
11 |
|
12 |
def extract_text_from_pdf(pdf_file, max_pages=16):
|
|
|
60 |
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
|
61 |
return history + [("User", question), ("Bot", "Hello! How can I assist you with the document today?")]
|
62 |
|
63 |
+
# Extract text from the uploaded PDF document
|
64 |
text = extract_text_from_pdf(document)
|
65 |
+
|
66 |
+
# Generate the bot response based on the question and extracted text
|
67 |
response = Bot(text, question)
|
68 |
+
|
69 |
+
# Update chat history with the user's question and bot's response
|
70 |
history.append(("User", question))
|
71 |
history.append(("Bot", response))
|
72 |
+
|
73 |
return history
|
74 |
|
75 |
+
# Set up the Gradio interface using Blocks
|
76 |
with gr.Blocks() as iface:
|
77 |
chatbot = gr.Chatbot()
|
78 |
document = gr.File(label="Upload PDF Document", type="filepath")
|