Realcat's picture
update: major change
499e141
# -*- coding: utf-8 -*-
# @Author : xuelun
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from typing import Type, Callable, Union, List, Optional
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
# self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
# dilate=replace_stride_with_dilation[2])
# self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# self.fc = nn.Linear(512 * block.expansion, num_classes)
#
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
# nn.init.constant_(m.weight, 1)
# nn.init.constant_(m.bias, 0)
#
# # Zero-initialize the last BN in each residual branch,
# # so that the residual branch starts with zeros, and each residual block behaves like an identity.
# # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
# if zero_init_residual:
# for m in self.modules():
# if isinstance(m, Bottleneck):
# nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
# elif isinstance(m, BasicBlock):
# nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
stride: int = 1, dilate: bool = False) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = [block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer)]
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
# x = self.conv1(x) # (2, 64, 320, 320)
# x = self.bn1(x) # (2, 64, 320, 320)
# x1 = self.relu(x) # (2, 64, 320, 320)
# x2 = self.maxpool(x1) # (2, 64, 160, 160)
# x2 = self.layer1(x1) # (2, 64, 160, 160)
# x3 = self.layer2(x2) # (2, 128, 80, 80)
# x4 = self.layer3(x3) # (2, 256, 40, 40)
# x = self.layer4(x) # (2, 512, 20, 20)
# x = self.avgpool(x) # (2, 512, 1, 1)
# x = torch.flatten(x, 1) # (2, 512)
# x = self.fc(x) # (2, 1000)
x0 = self.relu(self.bn1(self.conv1(x)))
x1 = self.layer1(x0) # 1/2
x2 = self.layer2(x1) # 1/4
x3 = self.layer3(x2) # 1/8
return x1, x2, x3
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def load_state_dict(self, state_dict, *args, **kwargs):
for k in list(state_dict.keys()):
if k.startswith('layer4.'): state_dict.pop(k)
if k.startswith('fc.'): state_dict.pop(k)
return super().load_state_dict(state_dict, *args, **kwargs)
class ResNetFPN_8_2(nn.Module):
"""
ResNet+FPN, output resolution are 1/8 and 1/2.
Each block has 2 layers.
"""
def __init__(self, config):
super().__init__()
# Config
block = BasicBlock
# initial_dim = config['initial_dim']
block_dims = config['block_dims']
# Class Variable
# self.in_planes = initial_dim
# Networks
# self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
# self.bn1 = nn.BatchNorm2d(initial_dim)
# self.relu = nn.ReLU(inplace=True)
# self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2
# self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4
# self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8
self.encode = ResNet(Bottleneck, [3, 4, 6, 3]) # resnet50
# 3. FPN upsample
self.layer3_outconv = conv1x1(block_dims[5], block_dims[3])
self.layer2_outconv = conv1x1(block_dims[4], block_dims[3])
self.layer2_outconv2 = nn.Sequential(
conv3x3(block_dims[3], block_dims[3]),
nn.BatchNorm2d(block_dims[3]),
nn.LeakyReLU(),
conv3x3(block_dims[3], block_dims[2]),
)
self.layer1_outconv = conv1x1(block_dims[3], block_dims[2])
self.layer1_outconv2 = nn.Sequential(
conv3x3(block_dims[2], block_dims[2]),
nn.BatchNorm2d(block_dims[2]),
nn.LeakyReLU(),
conv3x3(block_dims[2], block_dims[1]),
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, dim, stride=1):
layer1 = block(self.in_planes, dim, stride=stride)
layer2 = block(dim, dim, stride=1)
layers = (layer1, layer2)
self.in_planes = dim
return nn.Sequential(*layers)
def forward(self, x):
# ResNet Backbone
# x0 = self.relu(self.bn1(self.conv1(x)))
# x1 = self.layer1(x0) # 1/2
# x2 = self.layer2(x1) # 1/4
# x3 = self.layer3(x2) # 1/8
# x1: (2, 64, 320, 320)
# x2: (2, 128, 160, 160)
# x3: (2, 256, 80, 80)
x1, x2, x3 = self.encode(x)
# FPN
x3_out = self.layer3_outconv(x3) # (2, 256, 80, 80)
x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 256, 160, 160)
x2_out = self.layer2_outconv(x2) # (2, 256, 160, 160)
x2_out = self.layer2_outconv2(x2_out+x3_out_2x) # (2, 196, 160, 160)
x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 196, 320, 320)
x1_out = self.layer1_outconv(x1) # (2, 196, 320, 320)
x1_out = self.layer1_outconv2(x1_out+x2_out_2x)
return [x3_out, x1_out]
if __name__ == '__main__':
# Original form
# config = dict(initial_dim=128, block_dims=[128, 196, 256])
# model = ResNetFPN_8_2(config)
# # output (list):
# # 0: (2, 256, 80, 80)
# # 1: (2, 128, 320, 320)
# output = model(torch.randn(2, 1, 640, 640))
# model = ResNet(BasicBlock, [2, 2, 2, 2])
# # weights = torch.load('resnet18(5c106cde).ckpt', map_location='cpu')
# # model.load_state_dict(weights)
# output = model(torch.randn(2, 3, 640, 640))
config = dict(initial_dim=128, block_dims=[64, 128, 196, 256])
model = ResNetFPN_8_2(config)
# output (list):
# 0: (2, 256, 80, 80)
# 1: (2, 128, 320, 320)
output = model(torch.randn(2, 3, 640, 640))