# -*- coding: utf-8 -*- # @Author : xuelun import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from typing import Type, Callable, Union, List, Optional def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion: int = 4 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) # self.layer4 = self._make_layer(block, 512, layers[3], stride=2, # dilate=replace_stride_with_dilation[2]) # self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # self.fc = nn.Linear(512 * block.expansion, num_classes) # # for m in self.modules(): # if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) # # # Zero-initialize the last BN in each residual branch, # # so that the residual branch starts with zeros, and each residual block behaves like an identity. # # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 # if zero_init_residual: # for m in self.modules(): # if isinstance(m, Bottleneck): # nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] # elif isinstance(m, BasicBlock): # nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)] self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] # x = self.conv1(x) # (2, 64, 320, 320) # x = self.bn1(x) # (2, 64, 320, 320) # x1 = self.relu(x) # (2, 64, 320, 320) # x2 = self.maxpool(x1) # (2, 64, 160, 160) # x2 = self.layer1(x1) # (2, 64, 160, 160) # x3 = self.layer2(x2) # (2, 128, 80, 80) # x4 = self.layer3(x3) # (2, 256, 40, 40) # x = self.layer4(x) # (2, 512, 20, 20) # x = self.avgpool(x) # (2, 512, 1, 1) # x = torch.flatten(x, 1) # (2, 512) # x = self.fc(x) # (2, 1000) x0 = self.relu(self.bn1(self.conv1(x))) x1 = self.layer1(x0) # 1/2 x2 = self.layer2(x1) # 1/4 x3 = self.layer3(x2) # 1/8 return x1, x2, x3 def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def load_state_dict(self, state_dict, *args, **kwargs): for k in list(state_dict.keys()): if k.startswith('layer4.'): state_dict.pop(k) if k.startswith('fc.'): state_dict.pop(k) return super().load_state_dict(state_dict, *args, **kwargs) class ResNetFPN_8_2(nn.Module): """ ResNet+FPN, output resolution are 1/8 and 1/2. Each block has 2 layers. """ def __init__(self, config): super().__init__() # Config block = BasicBlock # initial_dim = config['initial_dim'] block_dims = config['block_dims'] # Class Variable # self.in_planes = initial_dim # Networks # self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False) # self.bn1 = nn.BatchNorm2d(initial_dim) # self.relu = nn.ReLU(inplace=True) # self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2 # self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4 # self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8 self.encode = ResNet(Bottleneck, [3, 4, 6, 3]) # resnet50 # 3. FPN upsample self.layer3_outconv = conv1x1(block_dims[5], block_dims[3]) self.layer2_outconv = conv1x1(block_dims[4], block_dims[3]) self.layer2_outconv2 = nn.Sequential( conv3x3(block_dims[3], block_dims[3]), nn.BatchNorm2d(block_dims[3]), nn.LeakyReLU(), conv3x3(block_dims[3], block_dims[2]), ) self.layer1_outconv = conv1x1(block_dims[3], block_dims[2]) self.layer1_outconv2 = nn.Sequential( conv3x3(block_dims[2], block_dims[2]), nn.BatchNorm2d(block_dims[2]), nn.LeakyReLU(), conv3x3(block_dims[2], block_dims[1]), ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, dim, stride=1): layer1 = block(self.in_planes, dim, stride=stride) layer2 = block(dim, dim, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): # ResNet Backbone # x0 = self.relu(self.bn1(self.conv1(x))) # x1 = self.layer1(x0) # 1/2 # x2 = self.layer2(x1) # 1/4 # x3 = self.layer3(x2) # 1/8 # x1: (2, 64, 320, 320) # x2: (2, 128, 160, 160) # x3: (2, 256, 80, 80) x1, x2, x3 = self.encode(x) # FPN x3_out = self.layer3_outconv(x3) # (2, 256, 80, 80) x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 256, 160, 160) x2_out = self.layer2_outconv(x2) # (2, 256, 160, 160) x2_out = self.layer2_outconv2(x2_out+x3_out_2x) # (2, 196, 160, 160) x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 196, 320, 320) x1_out = self.layer1_outconv(x1) # (2, 196, 320, 320) x1_out = self.layer1_outconv2(x1_out+x2_out_2x) return [x3_out, x1_out] if __name__ == '__main__': # Original form # config = dict(initial_dim=128, block_dims=[128, 196, 256]) # model = ResNetFPN_8_2(config) # # output (list): # # 0: (2, 256, 80, 80) # # 1: (2, 128, 320, 320) # output = model(torch.randn(2, 1, 640, 640)) # model = ResNet(BasicBlock, [2, 2, 2, 2]) # # weights = torch.load('resnet18(5c106cde).ckpt', map_location='cpu') # # model.load_state_dict(weights) # output = model(torch.randn(2, 3, 640, 640)) config = dict(initial_dim=128, block_dims=[64, 128, 196, 256]) model = ResNetFPN_8_2(config) # output (list): # 0: (2, 256, 80, 80) # 1: (2, 128, 320, 320) output = model(torch.randn(2, 3, 640, 640))