Jeffrey Rathgeber Jr commited on
Commit
21ef14c
·
unverified ·
1 Parent(s): 16a37d5

testmodelsonpre

Browse files
Files changed (1) hide show
  1. app.py +56 -53
app.py CHANGED
@@ -23,50 +23,50 @@ if option == 'MILESTONE 3':
23
  tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
24
  classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
25
 
26
- # model_name_1 = "Rathgeberj/milestone3_1"
27
- # # model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
28
- # model_1 = BertForMaskedLM.from_pretrained(model_name_1)
29
- # tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
30
- # classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
31
-
32
- # model_name_2 = "Rathgeberj/milestone3_2"
33
- # # model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
34
- # model_2 = BertForMaskedLM.from_pretrained(model_name_2)
35
- # tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
36
- # classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
37
-
38
- # model_name_3 = "Rathgeberj/milestone3_3"
39
- # # model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
40
- # model_3 = BertForMaskedLM.from_pretrained(model_name_3)
41
- # tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
42
- # classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
43
-
44
- # model_name_4 = "Rathgeberj/milestone3_4"
45
- # # model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
46
- # model_4 = BertForMaskedLM.from_pretrained(model_name_4)
47
- # tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
48
- # classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
49
-
50
- # model_name_5 = "Rathgeberj/milestone3_5"
51
- # # model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
52
- # model_5 = BertForMaskedLM.from_pretrained(model_name_5)
53
- # tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
54
- # classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
55
-
56
- # models = [model_0, model_1, model_2, model_3, model_4, model_5]
57
- # tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
58
- # classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
59
-
60
- X_train = [textIn]
61
- batch_0 = tokenizer_0(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
62
-
63
- with torch.no_grad():
64
- outputs = model_0(**batch_0, labels=torch.tensor([1, 0]))
65
- predictions = F.softmax(outputs.logits, dim=1)
66
- labels = torch.argmax(predictions, dim=1)
67
- labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
68
-
69
- st.write(predictions['label'])
70
 
71
 
72
  col = ['Tweet', 'Highest_Toxicity_Class_Overall', 'Score_Overall', 'Highest_Toxicity_Class_Except_Toxic', 'Score_Except_Toxic']
@@ -87,15 +87,18 @@ if option == 'MILESTONE 3':
87
  HTCET = [0]*10
88
  SET = [0]*10
89
 
90
- # for i in range(10):
91
- # X_train = pre_populated_tweets[i]
92
- # batch = tokenizer_0(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
93
-
94
- # with torch.no_grad():
95
- # outputs = model(**batch_0, labels=torch.tensor([1, 0]))
96
- # predictions = F.softmax(outputs.logits, dim=1)
97
- # labels = torch.argmax(predictions, dim=1)
98
- # labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
 
 
 
99
 
100
 
101
 
 
23
  tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
24
  classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
25
 
26
+ model_name_1 = "Rathgeberj/milestone3_1"
27
+ # model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
28
+ model_1 = BertForMaskedLM.from_pretrained(model_name_1)
29
+ tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
30
+ classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
31
+
32
+ model_name_2 = "Rathgeberj/milestone3_2"
33
+ # model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
34
+ model_2 = BertForMaskedLM.from_pretrained(model_name_2)
35
+ tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
36
+ classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
37
+
38
+ model_name_3 = "Rathgeberj/milestone3_3"
39
+ # model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
40
+ model_3 = BertForMaskedLM.from_pretrained(model_name_3)
41
+ tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
42
+ classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
43
+
44
+ model_name_4 = "Rathgeberj/milestone3_4"
45
+ # model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
46
+ model_4 = BertForMaskedLM.from_pretrained(model_name_4)
47
+ tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
48
+ classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
49
+
50
+ model_name_5 = "Rathgeberj/milestone3_5"
51
+ # model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
52
+ model_5 = BertForMaskedLM.from_pretrained(model_name_5)
53
+ tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
54
+ classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
55
+
56
+ models = [model_0, model_1, model_2, model_3, model_4, model_5]
57
+ tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
58
+ classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
59
+
60
+ # X_train = [textIn]
61
+ # batch = tokenizer_0(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
62
+
63
+ # with torch.no_grad():
64
+ # outputs = model_0(**batch_0, labels=torch.tensor([1, 0]))
65
+ # predictions = F.softmax(outputs.logits, dim=1)
66
+ # labels = torch.argmax(predictions, dim=1)
67
+ # labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
68
+
69
+ # st.write(predictions['label'])
70
 
71
 
72
  col = ['Tweet', 'Highest_Toxicity_Class_Overall', 'Score_Overall', 'Highest_Toxicity_Class_Except_Toxic', 'Score_Except_Toxic']
 
87
  HTCET = [0]*10
88
  SET = [0]*10
89
 
90
+ pred_data = []
91
+
92
+ for i in range(10):
93
+ X_train = pre_populated_tweets[i]
94
+ for j in range(6):
95
+ batch = tokenizers[j](X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
96
+ with torch.no_grad():
97
+ outputs = models[j](**batch, labels=torch.tensor([1, 0]))
98
+ predictions = F.softmax(outputs.logits, dim=1)
99
+ labels = torch.argmax(predictions, dim=1)
100
+ labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
101
+ pred_data.append(predictions)
102
 
103
 
104