Jeffrey Rathgeber Jr commited on
Commit
16a37d5
·
unverified ·
1 Parent(s): a2d76c4
Files changed (1) hide show
  1. app.py +13 -1
app.py CHANGED
@@ -61,7 +61,7 @@ if option == 'MILESTONE 3':
61
  batch_0 = tokenizer_0(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
62
 
63
  with torch.no_grad():
64
- outputs = model(**batch_0, labels=torch.tensor([1, 0]))
65
  predictions = F.softmax(outputs.logits, dim=1)
66
  labels = torch.argmax(predictions, dim=1)
67
  labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
@@ -87,6 +87,18 @@ if option == 'MILESTONE 3':
87
  HTCET = [0]*10
88
  SET = [0]*10
89
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  df = df.assign(Tweet=pre_populated_tweets)
91
  df = df.assign(Highest_Toxicity_Class_Overall=HTCO)
92
  df = df.assign(Score_Overall=SO)
 
61
  batch_0 = tokenizer_0(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
62
 
63
  with torch.no_grad():
64
+ outputs = model_0(**batch_0, labels=torch.tensor([1, 0]))
65
  predictions = F.softmax(outputs.logits, dim=1)
66
  labels = torch.argmax(predictions, dim=1)
67
  labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
 
87
  HTCET = [0]*10
88
  SET = [0]*10
89
 
90
+ # for i in range(10):
91
+ # X_train = pre_populated_tweets[i]
92
+ # batch = tokenizer_0(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
93
+
94
+ # with torch.no_grad():
95
+ # outputs = model(**batch_0, labels=torch.tensor([1, 0]))
96
+ # predictions = F.softmax(outputs.logits, dim=1)
97
+ # labels = torch.argmax(predictions, dim=1)
98
+ # labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
99
+
100
+
101
+
102
  df = df.assign(Tweet=pre_populated_tweets)
103
  df = df.assign(Highest_Toxicity_Class_Overall=HTCO)
104
  df = df.assign(Score_Overall=SO)