Commit 
							
							·
						
						fba5215
	
1
								Parent(s):
							
							25fffe1
								
Upload config.py
Browse files
    	
        config.py
    ADDED
    
    | @@ -0,0 +1,187 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import albumentations as A
         | 
| 2 | 
            +
            import cv2
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from albumentations.pytorch import ToTensorV2
         | 
| 6 | 
            +
            from utils import seed_everything
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            DATASET = '/content/PASCAL_VOC'
         | 
| 9 | 
            +
            DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 10 | 
            +
            # seed_everything()  # If you want deterministic behavior
         | 
| 11 | 
            +
            NUM_WORKERS = 2
         | 
| 12 | 
            +
            BATCH_SIZE = 32
         | 
| 13 | 
            +
            IMAGE_SIZE = 416
         | 
| 14 | 
            +
            NUM_CLASSES = 20
         | 
| 15 | 
            +
            LEARNING_RATE = 1e-3
         | 
| 16 | 
            +
            WEIGHT_DECAY = 1e-4
         | 
| 17 | 
            +
            NUM_EPOCHS = 40
         | 
| 18 | 
            +
            CONF_THRESHOLD = 0.05
         | 
| 19 | 
            +
            MAP_IOU_THRESH = 0.5
         | 
| 20 | 
            +
            NMS_IOU_THRESH = 0.45
         | 
| 21 | 
            +
            S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
         | 
| 22 | 
            +
            PIN_MEMORY = True
         | 
| 23 | 
            +
            LOAD_MODEL = False
         | 
| 24 | 
            +
            SAVE_MODEL = True
         | 
| 25 | 
            +
            CHECKPOINT_FILE = "checkpoint.pth.tar"
         | 
| 26 | 
            +
            IMG_DIR = DATASET + "/images/"
         | 
| 27 | 
            +
            LABEL_DIR = DATASET + "/labels/"
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ANCHORS = [
         | 
| 30 | 
            +
                [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
         | 
| 31 | 
            +
                [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
         | 
| 32 | 
            +
                [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
         | 
| 33 | 
            +
            ]  # Note these have been rescaled to be between [0, 1]
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            SCALED_ANCHORS = (
         | 
| 36 | 
            +
                torch.tensor(ANCHORS) * torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
         | 
| 37 | 
            +
            ).to(device="cuda")
         | 
| 38 | 
            +
            means = [0.485, 0.456, 0.406]
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            scale = 1.1
         | 
| 41 | 
            +
            train_transforms = A.Compose(
         | 
| 42 | 
            +
                [
         | 
| 43 | 
            +
                    A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
         | 
| 44 | 
            +
                    A.PadIfNeeded(
         | 
| 45 | 
            +
                        min_height=int(IMAGE_SIZE * scale),
         | 
| 46 | 
            +
                        min_width=int(IMAGE_SIZE * scale),
         | 
| 47 | 
            +
                        border_mode=cv2.BORDER_CONSTANT,
         | 
| 48 | 
            +
                    ),
         | 
| 49 | 
            +
                    A.Rotate(limit = 10, interpolation=1, border_mode=4),
         | 
| 50 | 
            +
                    A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
         | 
| 51 | 
            +
                    A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
         | 
| 52 | 
            +
                    A.OneOf(
         | 
| 53 | 
            +
                        [
         | 
| 54 | 
            +
                            A.ShiftScaleRotate(
         | 
| 55 | 
            +
                                rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
         | 
| 56 | 
            +
                            ),
         | 
| 57 | 
            +
                            # A.Affine(shear=15, p=0.5, mode="constant"),
         | 
| 58 | 
            +
                        ],
         | 
| 59 | 
            +
                        p=1.0,
         | 
| 60 | 
            +
                    ),
         | 
| 61 | 
            +
                    A.HorizontalFlip(p=0.5),
         | 
| 62 | 
            +
                    A.Blur(p=0.1),
         | 
| 63 | 
            +
                    A.CLAHE(p=0.1),
         | 
| 64 | 
            +
                    A.Posterize(p=0.1),
         | 
| 65 | 
            +
                    A.ToGray(p=0.1),
         | 
| 66 | 
            +
                    A.ChannelShuffle(p=0.05),
         | 
| 67 | 
            +
                    A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
         | 
| 68 | 
            +
                    ToTensorV2(),
         | 
| 69 | 
            +
                ],
         | 
| 70 | 
            +
                bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
         | 
| 71 | 
            +
            )
         | 
| 72 | 
            +
            test_transforms = A.Compose(
         | 
| 73 | 
            +
                [
         | 
| 74 | 
            +
                    A.LongestMaxSize(max_size=IMAGE_SIZE),
         | 
| 75 | 
            +
                    A.PadIfNeeded(
         | 
| 76 | 
            +
                        min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
         | 
| 77 | 
            +
                    ),
         | 
| 78 | 
            +
                    A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
         | 
| 79 | 
            +
                    ToTensorV2(),
         | 
| 80 | 
            +
                ],
         | 
| 81 | 
            +
                bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
         | 
| 82 | 
            +
            )
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            PASCAL_CLASSES = [
         | 
| 85 | 
            +
                "aeroplane",
         | 
| 86 | 
            +
                "bicycle",
         | 
| 87 | 
            +
                "bird",
         | 
| 88 | 
            +
                "boat",
         | 
| 89 | 
            +
                "bottle",
         | 
| 90 | 
            +
                "bus",
         | 
| 91 | 
            +
                "car",
         | 
| 92 | 
            +
                "cat",
         | 
| 93 | 
            +
                "chair",
         | 
| 94 | 
            +
                "cow",
         | 
| 95 | 
            +
                "diningtable",
         | 
| 96 | 
            +
                "dog",
         | 
| 97 | 
            +
                "horse",
         | 
| 98 | 
            +
                "motorbike",
         | 
| 99 | 
            +
                "person",
         | 
| 100 | 
            +
                "pottedplant",
         | 
| 101 | 
            +
                "sheep",
         | 
| 102 | 
            +
                "sofa",
         | 
| 103 | 
            +
                "train",
         | 
| 104 | 
            +
                "tvmonitor"
         | 
| 105 | 
            +
            ]
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            COCO_LABELS = ['person',
         | 
| 108 | 
            +
             'bicycle',
         | 
| 109 | 
            +
             'car',
         | 
| 110 | 
            +
             'motorcycle',
         | 
| 111 | 
            +
             'airplane',
         | 
| 112 | 
            +
             'bus',
         | 
| 113 | 
            +
             'train',
         | 
| 114 | 
            +
             'truck',
         | 
| 115 | 
            +
             'boat',
         | 
| 116 | 
            +
             'traffic light',
         | 
| 117 | 
            +
             'fire hydrant',
         | 
| 118 | 
            +
             'stop sign',
         | 
| 119 | 
            +
             'parking meter',
         | 
| 120 | 
            +
             'bench',
         | 
| 121 | 
            +
             'bird',
         | 
| 122 | 
            +
             'cat',
         | 
| 123 | 
            +
             'dog',
         | 
| 124 | 
            +
             'horse',
         | 
| 125 | 
            +
             'sheep',
         | 
| 126 | 
            +
             'cow',
         | 
| 127 | 
            +
             'elephant',
         | 
| 128 | 
            +
             'bear',
         | 
| 129 | 
            +
             'zebra',
         | 
| 130 | 
            +
             'giraffe',
         | 
| 131 | 
            +
             'backpack',
         | 
| 132 | 
            +
             'umbrella',
         | 
| 133 | 
            +
             'handbag',
         | 
| 134 | 
            +
             'tie',
         | 
| 135 | 
            +
             'suitcase',
         | 
| 136 | 
            +
             'frisbee',
         | 
| 137 | 
            +
             'skis',
         | 
| 138 | 
            +
             'snowboard',
         | 
| 139 | 
            +
             'sports ball',
         | 
| 140 | 
            +
             'kite',
         | 
| 141 | 
            +
             'baseball bat',
         | 
| 142 | 
            +
             'baseball glove',
         | 
| 143 | 
            +
             'skateboard',
         | 
| 144 | 
            +
             'surfboard',
         | 
| 145 | 
            +
             'tennis racket',
         | 
| 146 | 
            +
             'bottle',
         | 
| 147 | 
            +
             'wine glass',
         | 
| 148 | 
            +
             'cup',
         | 
| 149 | 
            +
             'fork',
         | 
| 150 | 
            +
             'knife',
         | 
| 151 | 
            +
             'spoon',
         | 
| 152 | 
            +
             'bowl',
         | 
| 153 | 
            +
             'banana',
         | 
| 154 | 
            +
             'apple',
         | 
| 155 | 
            +
             'sandwich',
         | 
| 156 | 
            +
             'orange',
         | 
| 157 | 
            +
             'broccoli',
         | 
| 158 | 
            +
             'carrot',
         | 
| 159 | 
            +
             'hot dog',
         | 
| 160 | 
            +
             'pizza',
         | 
| 161 | 
            +
             'donut',
         | 
| 162 | 
            +
             'cake',
         | 
| 163 | 
            +
             'chair',
         | 
| 164 | 
            +
             'couch',
         | 
| 165 | 
            +
             'potted plant',
         | 
| 166 | 
            +
             'bed',
         | 
| 167 | 
            +
             'dining table',
         | 
| 168 | 
            +
             'toilet',
         | 
| 169 | 
            +
             'tv',
         | 
| 170 | 
            +
             'laptop',
         | 
| 171 | 
            +
             'mouse',
         | 
| 172 | 
            +
             'remote',
         | 
| 173 | 
            +
             'keyboard',
         | 
| 174 | 
            +
             'cell phone',
         | 
| 175 | 
            +
             'microwave',
         | 
| 176 | 
            +
             'oven',
         | 
| 177 | 
            +
             'toaster',
         | 
| 178 | 
            +
             'sink',
         | 
| 179 | 
            +
             'refrigerator',
         | 
| 180 | 
            +
             'book',
         | 
| 181 | 
            +
             'clock',
         | 
| 182 | 
            +
             'vase',
         | 
| 183 | 
            +
             'scissors',
         | 
| 184 | 
            +
             'teddy bear',
         | 
| 185 | 
            +
             'hair drier',
         | 
| 186 | 
            +
             'toothbrush'
         | 
| 187 | 
            +
            ]
         |