Commit
·
25fffe1
1
Parent(s):
c24a19e
Upload 2 files
Browse files
utils.py
ADDED
|
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import config
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import matplotlib.patches as patches
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from collections import Counter
|
| 10 |
+
from torch.utils.data import DataLoader
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def iou_width_height(boxes1, boxes2):
|
| 15 |
+
"""
|
| 16 |
+
Parameters:
|
| 17 |
+
boxes1 (tensor): width and height of the first bounding boxes
|
| 18 |
+
boxes2 (tensor): width and height of the second bounding boxes
|
| 19 |
+
Returns:
|
| 20 |
+
tensor: Intersection over union of the corresponding boxes
|
| 21 |
+
"""
|
| 22 |
+
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
|
| 23 |
+
boxes1[..., 1], boxes2[..., 1]
|
| 24 |
+
)
|
| 25 |
+
union = (
|
| 26 |
+
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
|
| 27 |
+
)
|
| 28 |
+
return intersection / union
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
|
| 32 |
+
"""
|
| 33 |
+
Video explanation of this function:
|
| 34 |
+
https://youtu.be/XXYG5ZWtjj0
|
| 35 |
+
|
| 36 |
+
This function calculates intersection over union (iou) given pred boxes
|
| 37 |
+
and target boxes.
|
| 38 |
+
|
| 39 |
+
Parameters:
|
| 40 |
+
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
|
| 41 |
+
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
|
| 42 |
+
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
tensor: Intersection over union for all examples
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
if box_format == "midpoint":
|
| 49 |
+
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
|
| 50 |
+
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
|
| 51 |
+
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
|
| 52 |
+
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
|
| 53 |
+
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
|
| 54 |
+
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
|
| 55 |
+
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
|
| 56 |
+
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
|
| 57 |
+
|
| 58 |
+
if box_format == "corners":
|
| 59 |
+
box1_x1 = boxes_preds[..., 0:1]
|
| 60 |
+
box1_y1 = boxes_preds[..., 1:2]
|
| 61 |
+
box1_x2 = boxes_preds[..., 2:3]
|
| 62 |
+
box1_y2 = boxes_preds[..., 3:4]
|
| 63 |
+
box2_x1 = boxes_labels[..., 0:1]
|
| 64 |
+
box2_y1 = boxes_labels[..., 1:2]
|
| 65 |
+
box2_x2 = boxes_labels[..., 2:3]
|
| 66 |
+
box2_y2 = boxes_labels[..., 3:4]
|
| 67 |
+
|
| 68 |
+
x1 = torch.max(box1_x1, box2_x1)
|
| 69 |
+
y1 = torch.max(box1_y1, box2_y1)
|
| 70 |
+
x2 = torch.min(box1_x2, box2_x2)
|
| 71 |
+
y2 = torch.min(box1_y2, box2_y2)
|
| 72 |
+
|
| 73 |
+
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
| 74 |
+
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
|
| 75 |
+
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
|
| 76 |
+
|
| 77 |
+
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
| 81 |
+
"""
|
| 82 |
+
Video explanation of this function:
|
| 83 |
+
https://youtu.be/YDkjWEN8jNA
|
| 84 |
+
|
| 85 |
+
Does Non Max Suppression given bboxes
|
| 86 |
+
|
| 87 |
+
Parameters:
|
| 88 |
+
bboxes (list): list of lists containing all bboxes with each bboxes
|
| 89 |
+
specified as [class_pred, prob_score, x1, y1, x2, y2]
|
| 90 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
| 91 |
+
threshold (float): threshold to remove predicted bboxes (independent of IoU)
|
| 92 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list: bboxes after performing NMS given a specific IoU threshold
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
assert type(bboxes) == list
|
| 99 |
+
|
| 100 |
+
bboxes = [box for box in bboxes if box[1] > threshold]
|
| 101 |
+
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
|
| 102 |
+
bboxes_after_nms = []
|
| 103 |
+
|
| 104 |
+
while bboxes:
|
| 105 |
+
chosen_box = bboxes.pop(0)
|
| 106 |
+
|
| 107 |
+
bboxes = [
|
| 108 |
+
box
|
| 109 |
+
for box in bboxes
|
| 110 |
+
if box[0] != chosen_box[0]
|
| 111 |
+
or intersection_over_union(
|
| 112 |
+
torch.tensor(chosen_box[2:]),
|
| 113 |
+
torch.tensor(box[2:]),
|
| 114 |
+
box_format=box_format,
|
| 115 |
+
)
|
| 116 |
+
< iou_threshold
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
bboxes_after_nms.append(chosen_box)
|
| 120 |
+
|
| 121 |
+
return bboxes_after_nms
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def mean_average_precision(
|
| 125 |
+
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
|
| 126 |
+
):
|
| 127 |
+
"""
|
| 128 |
+
Video explanation of this function:
|
| 129 |
+
https://youtu.be/FppOzcDvaDI
|
| 130 |
+
|
| 131 |
+
This function calculates mean average precision (mAP)
|
| 132 |
+
|
| 133 |
+
Parameters:
|
| 134 |
+
pred_boxes (list): list of lists containing all bboxes with each bboxes
|
| 135 |
+
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
|
| 136 |
+
true_boxes (list): Similar as pred_boxes except all the correct ones
|
| 137 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
| 138 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
| 139 |
+
num_classes (int): number of classes
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
float: mAP value across all classes given a specific IoU threshold
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
# list storing all AP for respective classes
|
| 146 |
+
average_precisions = []
|
| 147 |
+
|
| 148 |
+
# used for numerical stability later on
|
| 149 |
+
epsilon = 1e-6
|
| 150 |
+
|
| 151 |
+
for c in range(num_classes):
|
| 152 |
+
detections = []
|
| 153 |
+
ground_truths = []
|
| 154 |
+
|
| 155 |
+
# Go through all predictions and targets,
|
| 156 |
+
# and only add the ones that belong to the
|
| 157 |
+
# current class c
|
| 158 |
+
for detection in pred_boxes:
|
| 159 |
+
if detection[1] == c:
|
| 160 |
+
detections.append(detection)
|
| 161 |
+
|
| 162 |
+
for true_box in true_boxes:
|
| 163 |
+
if true_box[1] == c:
|
| 164 |
+
ground_truths.append(true_box)
|
| 165 |
+
|
| 166 |
+
# find the amount of bboxes for each training example
|
| 167 |
+
# Counter here finds how many ground truth bboxes we get
|
| 168 |
+
# for each training example, so let's say img 0 has 3,
|
| 169 |
+
# img 1 has 5 then we will obtain a dictionary with:
|
| 170 |
+
# amount_bboxes = {0:3, 1:5}
|
| 171 |
+
amount_bboxes = Counter([gt[0] for gt in ground_truths])
|
| 172 |
+
|
| 173 |
+
# We then go through each key, val in this dictionary
|
| 174 |
+
# and convert to the following (w.r.t same example):
|
| 175 |
+
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
|
| 176 |
+
for key, val in amount_bboxes.items():
|
| 177 |
+
amount_bboxes[key] = torch.zeros(val)
|
| 178 |
+
|
| 179 |
+
# sort by box probabilities which is index 2
|
| 180 |
+
detections.sort(key=lambda x: x[2], reverse=True)
|
| 181 |
+
TP = torch.zeros((len(detections)))
|
| 182 |
+
FP = torch.zeros((len(detections)))
|
| 183 |
+
total_true_bboxes = len(ground_truths)
|
| 184 |
+
|
| 185 |
+
# If none exists for this class then we can safely skip
|
| 186 |
+
if total_true_bboxes == 0:
|
| 187 |
+
continue
|
| 188 |
+
|
| 189 |
+
for detection_idx, detection in enumerate(detections):
|
| 190 |
+
# Only take out the ground_truths that have the same
|
| 191 |
+
# training idx as detection
|
| 192 |
+
ground_truth_img = [
|
| 193 |
+
bbox for bbox in ground_truths if bbox[0] == detection[0]
|
| 194 |
+
]
|
| 195 |
+
|
| 196 |
+
num_gts = len(ground_truth_img)
|
| 197 |
+
best_iou = 0
|
| 198 |
+
|
| 199 |
+
for idx, gt in enumerate(ground_truth_img):
|
| 200 |
+
iou = intersection_over_union(
|
| 201 |
+
torch.tensor(detection[3:]),
|
| 202 |
+
torch.tensor(gt[3:]),
|
| 203 |
+
box_format=box_format,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
if iou > best_iou:
|
| 207 |
+
best_iou = iou
|
| 208 |
+
best_gt_idx = idx
|
| 209 |
+
|
| 210 |
+
if best_iou > iou_threshold:
|
| 211 |
+
# only detect ground truth detection once
|
| 212 |
+
if amount_bboxes[detection[0]][best_gt_idx] == 0:
|
| 213 |
+
# true positive and add this bounding box to seen
|
| 214 |
+
TP[detection_idx] = 1
|
| 215 |
+
amount_bboxes[detection[0]][best_gt_idx] = 1
|
| 216 |
+
else:
|
| 217 |
+
FP[detection_idx] = 1
|
| 218 |
+
|
| 219 |
+
# if IOU is lower then the detection is a false positive
|
| 220 |
+
else:
|
| 221 |
+
FP[detection_idx] = 1
|
| 222 |
+
|
| 223 |
+
TP_cumsum = torch.cumsum(TP, dim=0)
|
| 224 |
+
FP_cumsum = torch.cumsum(FP, dim=0)
|
| 225 |
+
recalls = TP_cumsum / (total_true_bboxes + epsilon)
|
| 226 |
+
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
|
| 227 |
+
precisions = torch.cat((torch.tensor([1]), precisions))
|
| 228 |
+
recalls = torch.cat((torch.tensor([0]), recalls))
|
| 229 |
+
# torch.trapz for numerical integration
|
| 230 |
+
average_precisions.append(torch.trapz(precisions, recalls))
|
| 231 |
+
|
| 232 |
+
return sum(average_precisions) / len(average_precisions)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def plot_image(image, boxes):
|
| 236 |
+
"""Plots predicted bounding boxes on the image"""
|
| 237 |
+
cmap = plt.get_cmap("tab20b")
|
| 238 |
+
class_labels = config.COCO_LABELS if config.DATASET=='COCO' else config.PASCAL_CLASSES
|
| 239 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
| 240 |
+
im = np.array(image)
|
| 241 |
+
height, width, _ = im.shape
|
| 242 |
+
|
| 243 |
+
# Create figure and axes
|
| 244 |
+
fig, ax = plt.subplots(1)
|
| 245 |
+
# Display the image
|
| 246 |
+
ax.imshow(im)
|
| 247 |
+
|
| 248 |
+
# box[0] is x midpoint, box[2] is width
|
| 249 |
+
# box[1] is y midpoint, box[3] is height
|
| 250 |
+
|
| 251 |
+
# Create a Rectangle patch
|
| 252 |
+
for box in boxes:
|
| 253 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
| 254 |
+
class_pred = box[0]
|
| 255 |
+
box = box[2:]
|
| 256 |
+
upper_left_x = box[0] - box[2] / 2
|
| 257 |
+
upper_left_y = box[1] - box[3] / 2
|
| 258 |
+
rect = patches.Rectangle(
|
| 259 |
+
(upper_left_x * width, upper_left_y * height),
|
| 260 |
+
box[2] * width,
|
| 261 |
+
box[3] * height,
|
| 262 |
+
linewidth=2,
|
| 263 |
+
edgecolor=colors[int(class_pred)],
|
| 264 |
+
facecolor="none",
|
| 265 |
+
)
|
| 266 |
+
# Add the patch to the Axes
|
| 267 |
+
ax.add_patch(rect)
|
| 268 |
+
plt.text(
|
| 269 |
+
upper_left_x * width,
|
| 270 |
+
upper_left_y * height,
|
| 271 |
+
s=class_labels[int(class_pred)],
|
| 272 |
+
color="white",
|
| 273 |
+
verticalalignment="top",
|
| 274 |
+
bbox={"color": colors[int(class_pred)], "pad": 0},
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
plt.show()
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def get_evaluation_bboxes(
|
| 281 |
+
loader,
|
| 282 |
+
model,
|
| 283 |
+
iou_threshold,
|
| 284 |
+
anchors,
|
| 285 |
+
threshold,
|
| 286 |
+
box_format="midpoint",
|
| 287 |
+
device="cuda",
|
| 288 |
+
):
|
| 289 |
+
# make sure model is in eval before get bboxes
|
| 290 |
+
model.eval()
|
| 291 |
+
train_idx = 0
|
| 292 |
+
all_pred_boxes = []
|
| 293 |
+
all_true_boxes = []
|
| 294 |
+
for batch_idx, (x, labels) in enumerate(tqdm(loader)):
|
| 295 |
+
x = x.to(device)
|
| 296 |
+
|
| 297 |
+
with torch.no_grad():
|
| 298 |
+
predictions = model(x)
|
| 299 |
+
|
| 300 |
+
batch_size = x.shape[0]
|
| 301 |
+
bboxes = [[] for _ in range(batch_size)]
|
| 302 |
+
for i in range(3):
|
| 303 |
+
S = predictions[i].shape[2]
|
| 304 |
+
anchor = torch.tensor([*anchors[i]]).to(device) * S
|
| 305 |
+
boxes_scale_i = cells_to_bboxes(
|
| 306 |
+
predictions[i], anchor, S=S, is_preds=True
|
| 307 |
+
)
|
| 308 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
| 309 |
+
bboxes[idx] += box
|
| 310 |
+
|
| 311 |
+
# we just want one bbox for each label, not one for each scale
|
| 312 |
+
true_bboxes = cells_to_bboxes(
|
| 313 |
+
labels[2], anchor, S=S, is_preds=False
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
for idx in range(batch_size):
|
| 317 |
+
nms_boxes = non_max_suppression(
|
| 318 |
+
bboxes[idx],
|
| 319 |
+
iou_threshold=iou_threshold,
|
| 320 |
+
threshold=threshold,
|
| 321 |
+
box_format=box_format,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
for nms_box in nms_boxes:
|
| 325 |
+
all_pred_boxes.append([train_idx] + nms_box)
|
| 326 |
+
|
| 327 |
+
for box in true_bboxes[idx]:
|
| 328 |
+
if box[1] > threshold:
|
| 329 |
+
all_true_boxes.append([train_idx] + box)
|
| 330 |
+
|
| 331 |
+
train_idx += 1
|
| 332 |
+
|
| 333 |
+
model.train()
|
| 334 |
+
return all_pred_boxes, all_true_boxes
|
| 335 |
+
|
| 336 |
+
def get_evaluation_bboxes1(
|
| 337 |
+
batch,
|
| 338 |
+
model,
|
| 339 |
+
iou_threshold,
|
| 340 |
+
anchors,
|
| 341 |
+
threshold,
|
| 342 |
+
box_format="midpoint",
|
| 343 |
+
device="cuda",
|
| 344 |
+
):
|
| 345 |
+
# make sure model is in eval before get bboxes
|
| 346 |
+
|
| 347 |
+
train_idx = 0
|
| 348 |
+
all_pred_boxes = []
|
| 349 |
+
all_true_boxes = []
|
| 350 |
+
x, labels = batch
|
| 351 |
+
x = x.to(device)
|
| 352 |
+
|
| 353 |
+
with torch.no_grad():
|
| 354 |
+
predictions = model(x)
|
| 355 |
+
|
| 356 |
+
batch_size = x.shape[0]
|
| 357 |
+
bboxes = [[] for _ in range(batch_size)]
|
| 358 |
+
for i in range(3):
|
| 359 |
+
S = predictions[i].shape[2]
|
| 360 |
+
anchor = torch.tensor([*anchors[i]]).to(device) * S
|
| 361 |
+
boxes_scale_i = cells_to_bboxes(
|
| 362 |
+
predictions[i], anchor, S=S, is_preds=True
|
| 363 |
+
)
|
| 364 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
| 365 |
+
bboxes[idx] += box
|
| 366 |
+
|
| 367 |
+
# we just want one bbox for each label, not one for each scale
|
| 368 |
+
true_bboxes = cells_to_bboxes(
|
| 369 |
+
labels[2], anchor, S=S, is_preds=False
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
for idx in range(batch_size):
|
| 373 |
+
nms_boxes = non_max_suppression(
|
| 374 |
+
bboxes[idx],
|
| 375 |
+
iou_threshold=iou_threshold,
|
| 376 |
+
threshold=threshold,
|
| 377 |
+
box_format=box_format,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
for nms_box in nms_boxes:
|
| 381 |
+
all_pred_boxes.append([train_idx] + nms_box)
|
| 382 |
+
|
| 383 |
+
for box in true_bboxes[idx]:
|
| 384 |
+
if box[1] > threshold:
|
| 385 |
+
all_true_boxes.append([train_idx] + box)
|
| 386 |
+
|
| 387 |
+
train_idx += 1
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
return all_pred_boxes, all_true_boxes
|
| 391 |
+
|
| 392 |
+
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
| 393 |
+
"""
|
| 394 |
+
Scales the predictions coming from the model to
|
| 395 |
+
be relative to the entire image such that they for example later
|
| 396 |
+
can be plotted or.
|
| 397 |
+
INPUT:
|
| 398 |
+
predictions: tensor of size (N, 3, S, S, num_classes+5)
|
| 399 |
+
anchors: the anchors used for the predictions
|
| 400 |
+
S: the number of cells the image is divided in on the width (and height)
|
| 401 |
+
is_preds: whether the input is predictions or the true bounding boxes
|
| 402 |
+
OUTPUT:
|
| 403 |
+
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
|
| 404 |
+
object score, bounding box coordinates
|
| 405 |
+
"""
|
| 406 |
+
BATCH_SIZE = predictions.shape[0]
|
| 407 |
+
num_anchors = len(anchors)
|
| 408 |
+
box_predictions = predictions[..., 1:5]
|
| 409 |
+
if is_preds:
|
| 410 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
| 411 |
+
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
|
| 412 |
+
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
|
| 413 |
+
scores = torch.sigmoid(predictions[..., 0:1])
|
| 414 |
+
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
|
| 415 |
+
else:
|
| 416 |
+
scores = predictions[..., 0:1]
|
| 417 |
+
best_class = predictions[..., 5:6]
|
| 418 |
+
|
| 419 |
+
cell_indices = (
|
| 420 |
+
torch.arange(S)
|
| 421 |
+
.repeat(predictions.shape[0], 3, S, 1)
|
| 422 |
+
.unsqueeze(-1)
|
| 423 |
+
.to(predictions.device)
|
| 424 |
+
)
|
| 425 |
+
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
|
| 426 |
+
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
|
| 427 |
+
w_h = 1 / S * box_predictions[..., 2:4]
|
| 428 |
+
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
|
| 429 |
+
return converted_bboxes.tolist()
|
| 430 |
+
|
| 431 |
+
def check_class_accuracy(model, loader, threshold):
|
| 432 |
+
model.eval()
|
| 433 |
+
tot_class_preds, correct_class = 0, 0
|
| 434 |
+
tot_noobj, correct_noobj = 0, 0
|
| 435 |
+
tot_obj, correct_obj = 0, 0
|
| 436 |
+
|
| 437 |
+
for idx, (x, y) in enumerate(tqdm(loader)):
|
| 438 |
+
x = x.to(config.DEVICE)
|
| 439 |
+
with torch.no_grad():
|
| 440 |
+
out = model(x)
|
| 441 |
+
|
| 442 |
+
for i in range(3):
|
| 443 |
+
y[i] = y[i].to(config.DEVICE)
|
| 444 |
+
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
|
| 445 |
+
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
|
| 446 |
+
|
| 447 |
+
correct_class += torch.sum(
|
| 448 |
+
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
|
| 449 |
+
)
|
| 450 |
+
tot_class_preds += torch.sum(obj)
|
| 451 |
+
|
| 452 |
+
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
|
| 453 |
+
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
|
| 454 |
+
tot_obj += torch.sum(obj)
|
| 455 |
+
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
|
| 456 |
+
tot_noobj += torch.sum(noobj)
|
| 457 |
+
|
| 458 |
+
print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%")
|
| 459 |
+
print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%")
|
| 460 |
+
print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%")
|
| 461 |
+
model.train()
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def get_mean_std(loader):
|
| 465 |
+
# var[X] = E[X**2] - E[X]**2
|
| 466 |
+
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
|
| 467 |
+
|
| 468 |
+
for data, _ in tqdm(loader):
|
| 469 |
+
channels_sum += torch.mean(data, dim=[0, 2, 3])
|
| 470 |
+
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
|
| 471 |
+
num_batches += 1
|
| 472 |
+
|
| 473 |
+
mean = channels_sum / num_batches
|
| 474 |
+
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
|
| 475 |
+
|
| 476 |
+
return mean, std
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
|
| 480 |
+
print("=> Saving checkpoint")
|
| 481 |
+
checkpoint = {
|
| 482 |
+
"state_dict": model.state_dict(),
|
| 483 |
+
"optimizer": optimizer.state_dict(),
|
| 484 |
+
}
|
| 485 |
+
torch.save(checkpoint, filename)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def load_checkpoint(checkpoint_file, model, optimizer, lr):
|
| 489 |
+
print("=> Loading checkpoint")
|
| 490 |
+
checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
|
| 491 |
+
model.load_state_dict(checkpoint["state_dict"])
|
| 492 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
| 493 |
+
|
| 494 |
+
# If we don't do this then it will just have learning rate of old checkpoint
|
| 495 |
+
# and it will lead to many hours of debugging \:
|
| 496 |
+
for param_group in optimizer.param_groups:
|
| 497 |
+
param_group["lr"] = lr
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def get_loaders(train_csv_path, test_csv_path):
|
| 501 |
+
from dataset import YOLODataset
|
| 502 |
+
|
| 503 |
+
IMAGE_SIZE = config.IMAGE_SIZE
|
| 504 |
+
train_dataset = YOLODataset(
|
| 505 |
+
train_csv_path,
|
| 506 |
+
transform=config.train_transforms,
|
| 507 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
| 508 |
+
img_dir=config.IMG_DIR,
|
| 509 |
+
label_dir=config.LABEL_DIR,
|
| 510 |
+
anchors=config.ANCHORS,
|
| 511 |
+
)
|
| 512 |
+
test_dataset = YOLODataset(
|
| 513 |
+
test_csv_path,
|
| 514 |
+
transform=config.test_transforms,
|
| 515 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
| 516 |
+
img_dir=config.IMG_DIR,
|
| 517 |
+
label_dir=config.LABEL_DIR,
|
| 518 |
+
anchors=config.ANCHORS,
|
| 519 |
+
)
|
| 520 |
+
train_loader = DataLoader(
|
| 521 |
+
dataset=train_dataset,
|
| 522 |
+
batch_size=config.BATCH_SIZE,
|
| 523 |
+
num_workers=config.NUM_WORKERS,
|
| 524 |
+
pin_memory=config.PIN_MEMORY,
|
| 525 |
+
shuffle=True,
|
| 526 |
+
drop_last=False,
|
| 527 |
+
)
|
| 528 |
+
test_loader = DataLoader(
|
| 529 |
+
dataset=test_dataset,
|
| 530 |
+
batch_size=config.BATCH_SIZE,
|
| 531 |
+
num_workers=config.NUM_WORKERS,
|
| 532 |
+
pin_memory=config.PIN_MEMORY,
|
| 533 |
+
shuffle=False,
|
| 534 |
+
drop_last=False,
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
train_eval_dataset = YOLODataset(
|
| 538 |
+
train_csv_path,
|
| 539 |
+
transform=config.test_transforms,
|
| 540 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
| 541 |
+
img_dir=config.IMG_DIR,
|
| 542 |
+
label_dir=config.LABEL_DIR,
|
| 543 |
+
anchors=config.ANCHORS,
|
| 544 |
+
)
|
| 545 |
+
train_eval_loader = DataLoader(
|
| 546 |
+
dataset=train_eval_dataset,
|
| 547 |
+
batch_size=config.BATCH_SIZE,
|
| 548 |
+
num_workers=config.NUM_WORKERS,
|
| 549 |
+
pin_memory=config.PIN_MEMORY,
|
| 550 |
+
shuffle=False,
|
| 551 |
+
drop_last=False,
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
return train_loader, test_loader, train_eval_loader
|
| 555 |
+
|
| 556 |
+
def plot_couple_examples(model, loader, thresh, iou_thresh, anchors):
|
| 557 |
+
model.eval()
|
| 558 |
+
x, y = next(iter(loader))
|
| 559 |
+
x = x.to("cuda")
|
| 560 |
+
with torch.no_grad():
|
| 561 |
+
out = model(x)
|
| 562 |
+
bboxes = [[] for _ in range(x.shape[0])]
|
| 563 |
+
for i in range(3):
|
| 564 |
+
batch_size, A, S, _, _ = out[i].shape
|
| 565 |
+
anchor = anchors[i]
|
| 566 |
+
boxes_scale_i = cells_to_bboxes(
|
| 567 |
+
out[i], anchor, S=S, is_preds=True
|
| 568 |
+
)
|
| 569 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
| 570 |
+
bboxes[idx] += box
|
| 571 |
+
|
| 572 |
+
model.train()
|
| 573 |
+
|
| 574 |
+
for i in range(batch_size//4):
|
| 575 |
+
nms_boxes = non_max_suppression(
|
| 576 |
+
bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
|
| 577 |
+
)
|
| 578 |
+
plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes)
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
def seed_everything(seed=42):
|
| 583 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 584 |
+
random.seed(seed)
|
| 585 |
+
np.random.seed(seed)
|
| 586 |
+
torch.manual_seed(seed)
|
| 587 |
+
torch.cuda.manual_seed(seed)
|
| 588 |
+
torch.cuda.manual_seed_all(seed)
|
| 589 |
+
torch.backends.cudnn.deterministic = True
|
| 590 |
+
torch.backends.cudnn.benchmark = False
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def clip_coords(boxes, img_shape):
|
| 594 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
| 595 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
| 596 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
| 597 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
| 598 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
| 599 |
+
|
| 600 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
| 601 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
| 602 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 603 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
| 604 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
| 605 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
| 606 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
| 607 |
+
return y
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
| 611 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
| 612 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 613 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
| 614 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
| 615 |
+
return y
|
| 616 |
+
|
| 617 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
| 618 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
| 619 |
+
if clip:
|
| 620 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
| 621 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 622 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
| 623 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
| 624 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
| 625 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
| 626 |
+
return y
|
| 627 |
+
|
| 628 |
+
def clip_boxes(boxes, shape):
|
| 629 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
| 630 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
| 631 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
| 632 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
| 633 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
| 634 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
| 635 |
+
else: # np.array (faster grouped)
|
| 636 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
| 637 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
yolov3.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from pytorch_lightning import LightningModule
|
| 3 |
+
from model import YOLOv3
|
| 4 |
+
from dataset import YOLODataset
|
| 5 |
+
from loss import YoloLoss
|
| 6 |
+
from torch import optim
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import config
|
| 9 |
+
|
| 10 |
+
class YOLOV3_PL(LightningModule):
|
| 11 |
+
def __init__(self, in_channels=3, num_classes=config.NUM_CLASSES, batch_size=config.BATCH_SIZE,
|
| 12 |
+
learning_rate=config.LEARNING_RATE , num_epochs=config.NUM_EPOCHS):
|
| 13 |
+
super(YOLOV3_PL, self).__init__()
|
| 14 |
+
self.model = YOLOv3(in_channels, num_classes)
|
| 15 |
+
self.criterion = YoloLoss()
|
| 16 |
+
self.batch_size = batch_size
|
| 17 |
+
self.learning_rate = learning_rate
|
| 18 |
+
self.num_epochs = num_epochs
|
| 19 |
+
self.scaled_anchors = config.SCALED_ANCHORS
|
| 20 |
+
|
| 21 |
+
def train_dataloader(self):
|
| 22 |
+
self.train_data = YOLODataset(
|
| 23 |
+
config.DATASET + '/train.csv',
|
| 24 |
+
transform=config.train_transforms,
|
| 25 |
+
img_dir=config.IMG_DIR,
|
| 26 |
+
label_dir=config.LABEL_DIR,
|
| 27 |
+
anchors=config.ANCHORS
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
train_dataloader = DataLoader(
|
| 31 |
+
dataset=self.train_data,
|
| 32 |
+
batch_size=self.batch_size,
|
| 33 |
+
num_workers=config.NUM_WORKERS,
|
| 34 |
+
pin_memory=config.PIN_MEMORY,
|
| 35 |
+
shuffle=True
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
return train_dataloader
|
| 39 |
+
|
| 40 |
+
def val_dataloader(self):
|
| 41 |
+
|
| 42 |
+
self.valid_data = YOLODataset(
|
| 43 |
+
config.DATASET + '/test.csv',
|
| 44 |
+
transform=config.test_transforms,
|
| 45 |
+
img_dir=config.IMG_DIR,
|
| 46 |
+
label_dir=config.LABEL_DIR,
|
| 47 |
+
anchors=config.ANCHORS
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
return DataLoader(
|
| 51 |
+
dataset=self.valid_data,
|
| 52 |
+
batch_size=self.batch_size,
|
| 53 |
+
num_workers=config.NUM_WORKERS,
|
| 54 |
+
pin_memory=config.PIN_MEMORY,
|
| 55 |
+
shuffle=False
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def test_dataloader(self):
|
| 59 |
+
return self.val_dataloader()
|
| 60 |
+
|
| 61 |
+
def forward(self, x):
|
| 62 |
+
return self.model(x)
|
| 63 |
+
|
| 64 |
+
def training_step(self, batch, batch_idx):
|
| 65 |
+
x, y = batch
|
| 66 |
+
out = self.forward(x)
|
| 67 |
+
loss = self.criterion(out, y, self.scaled_anchors)
|
| 68 |
+
self.log(f"train_loss", loss, on_epoch=True, prog_bar=True, logger=True)
|
| 69 |
+
|
| 70 |
+
return loss
|
| 71 |
+
|
| 72 |
+
def validation_step(self, batch, batch_idx):
|
| 73 |
+
x, y = batch
|
| 74 |
+
out = self.forward(x)
|
| 75 |
+
loss = self.criterion(out, y, self.scaled_anchors)
|
| 76 |
+
self.log(f"val_loss", loss, on_epoch=True, prog_bar=True, logger=True)
|
| 77 |
+
return loss
|
| 78 |
+
|
| 79 |
+
def test_step(self, batch, batch_idx, dataloader_idx=0):
|
| 80 |
+
if isinstance(batch, (tuple, list)):
|
| 81 |
+
x, _ = batch
|
| 82 |
+
else:
|
| 83 |
+
x = batch
|
| 84 |
+
return self.forward(x)
|
| 85 |
+
|
| 86 |
+
def configure_optimizers(self):
|
| 87 |
+
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate/100, weight_decay=config.WEIGHT_DECAY)
|
| 88 |
+
scheduler = optim.lr_scheduler.OneCycleLR(
|
| 89 |
+
optimizer,
|
| 90 |
+
max_lr=self.learning_rate,
|
| 91 |
+
steps_per_epoch=len(self.train_dataloader()),
|
| 92 |
+
epochs=self.num_epochs,
|
| 93 |
+
pct_start=0.2,
|
| 94 |
+
div_factor=10,
|
| 95 |
+
three_phase=False,
|
| 96 |
+
final_div_factor=10,
|
| 97 |
+
anneal_strategy='linear'
|
| 98 |
+
)
|
| 99 |
+
return {
|
| 100 |
+
'optimizer': optimizer,
|
| 101 |
+
'lr_scheduler': {
|
| 102 |
+
"scheduler": scheduler,
|
| 103 |
+
"interval": "step",
|
| 104 |
+
}
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def main():
|
| 112 |
+
num_classes = 20
|
| 113 |
+
IMAGE_SIZE = 416
|
| 114 |
+
INPUT_SIZE = IMAGE_SIZE
|
| 115 |
+
model = YOLOV3_PL(num_classes=num_classes)
|
| 116 |
+
from torchinfo import summary
|
| 117 |
+
print(summary(model, input_size=(2, 3, INPUT_SIZE, INPUT_SIZE)))
|
| 118 |
+
inp = torch.randn((2, 3, INPUT_SIZE, INPUT_SIZE))
|
| 119 |
+
out = model(inp)
|
| 120 |
+
assert out[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
|
| 121 |
+
assert out[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
|
| 122 |
+
assert out[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
|
| 123 |
+
print("Success!")
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
main()
|