Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,20 @@
|
|
|
|
1 |
import asyncio
|
2 |
from generate_prompts import generate_prompt
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
from io import BytesIO
|
5 |
import gradio as gr
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
print("Loading the model...")
|
13 |
-
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
14 |
-
print("Model loaded successfully.")
|
15 |
|
16 |
-
|
17 |
-
asyncio.run(load_model())
|
18 |
-
|
19 |
-
async def generate_image(prompt, prompt_name):
|
20 |
try:
|
21 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
22 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
@@ -53,7 +51,8 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
53 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
54 |
|
55 |
# Generate images for each prompt in parallel
|
56 |
-
|
|
|
57 |
print("Tasks created for image generation.")
|
58 |
responses = await asyncio.gather(*tasks)
|
59 |
print("Responses received from image generation tasks.")
|
@@ -73,6 +72,9 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
73 |
asyncio.set_event_loop(loop)
|
74 |
print("Event loop created.")
|
75 |
|
|
|
|
|
|
|
76 |
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
77 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
78 |
print(f"process_prompt completed with return value: {cmpt_return}")
|
|
|
1 |
+
import os
|
2 |
import asyncio
|
3 |
from generate_prompts import generate_prompt
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import gradio as gr
|
7 |
+
import threading
|
8 |
|
9 |
+
# Load the model once outside of the function
|
10 |
+
print("Loading the model...")
|
11 |
+
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
12 |
+
print("Model loaded successfully.")
|
13 |
|
14 |
+
# Create a thread-local storage object
|
15 |
+
thread_local = threading.local()
|
|
|
|
|
|
|
16 |
|
17 |
+
def generate_image(prompt, prompt_name):
|
|
|
|
|
|
|
18 |
try:
|
19 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
20 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
|
|
51 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
52 |
|
53 |
# Generate images for each prompt in parallel
|
54 |
+
loop = asyncio.get_running_loop()
|
55 |
+
tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
56 |
print("Tasks created for image generation.")
|
57 |
responses = await asyncio.gather(*tasks)
|
58 |
print("Responses received from image generation tasks.")
|
|
|
72 |
asyncio.set_event_loop(loop)
|
73 |
print("Event loop created.")
|
74 |
|
75 |
+
# Initialize thread-local variables
|
76 |
+
thread_local.step = 0
|
77 |
+
|
78 |
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
79 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
80 |
print(f"process_prompt completed with return value: {cmpt_return}")
|