RanM commited on
Commit
dab19e6
·
verified ·
1 Parent(s): a2b0d68

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -39
app.py CHANGED
@@ -1,45 +1,22 @@
1
- import os
2
  import asyncio
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
- import threading
8
- from diffusers.schedulers import PNDMScheduler
9
 
10
- # Custom Scheduler with ThreadLocal step index
11
- class ThreadLocalStepScheduler:
12
- def __init__(self, base_scheduler):
13
- self.base_scheduler = base_scheduler
14
- self._step = threading.local()
15
 
16
- def _init_step_index(self):
17
- self._step.step = 0
 
 
 
18
 
19
- @property
20
- def step(self):
21
- if not hasattr(self._step, 'step'):
22
- self._init_step_index()
23
- return self._step.step
24
 
25
- @step.setter
26
- def step(self, value):
27
- self._step.step = value
28
-
29
- def step_process(self, *args, **kwargs):
30
- if not hasattr(self._step, 'step'):
31
- self._init_step_index()
32
- self._step.step += 1
33
- return self.base_scheduler.step(*args, **kwargs)
34
-
35
- # Load the model once outside of the function
36
- print("Loading the model...")
37
- base_scheduler = PNDMScheduler.from_config("stabilityai/sdxl-turbo")
38
- custom_scheduler = ThreadLocalStepScheduler(base_scheduler)
39
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", scheduler=custom_scheduler)
40
- print("Model loaded successfully.")
41
-
42
- def generate_image(prompt, prompt_name):
43
  try:
44
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
45
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
@@ -71,13 +48,12 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
71
  for paragraph_number, sentences in sentence_mapping.items():
72
  combined_sentence = " ".join(sentences)
73
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
74
- prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) # Correct prompt generation
75
  prompts.append((paragraph_number, prompt))
76
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
77
 
78
  # Generate images for each prompt in parallel
79
- loop = asyncio.get_running_loop()
80
- tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
81
  print("Tasks created for image generation.")
82
  responses = await asyncio.gather(*tasks)
83
  print("Responses received from image generation tasks.")
@@ -97,9 +73,6 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
97
  asyncio.set_event_loop(loop)
98
  print("Event loop created.")
99
 
100
- # Initialize thread-local variables
101
- custom_scheduler._init_step_index()
102
-
103
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
104
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
105
  print(f"process_prompt completed with return value: {cmpt_return}")
 
 
1
  import asyncio
2
  from generate_prompts import generate_prompt
3
  from diffusers import AutoPipelineForText2Image
4
  from io import BytesIO
5
  import gradio as gr
 
 
6
 
7
+ # Asynchronously load the model once outside of the function
8
+ model = None
 
 
 
9
 
10
+ async def load_model():
11
+ global model
12
+ print("Loading the model...")
13
+ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
14
+ print("Model loaded successfully.")
15
 
16
+ # Run the model loading
17
+ asyncio.run(load_model())
 
 
 
18
 
19
+ async def generate_image(prompt, prompt_name):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  try:
21
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
22
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
 
48
  for paragraph_number, sentences in sentence_mapping.items():
49
  combined_sentence = " ".join(sentences)
50
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
51
+ prompt = generate_prompt(combined_sentence, character_dict, selected_style) # Correct prompt generation
52
  prompts.append((paragraph_number, prompt))
53
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
54
 
55
  # Generate images for each prompt in parallel
56
+ tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
 
57
  print("Tasks created for image generation.")
58
  responses = await asyncio.gather(*tasks)
59
  print("Responses received from image generation tasks.")
 
73
  asyncio.set_event_loop(loop)
74
  print("Event loop created.")
75
 
 
 
 
76
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
77
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
78
  print(f"process_prompt completed with return value: {cmpt_return}")